Cargando…
Using neural networks to learn energy correction factors: a case study for the ATLAS calorimeter
Autor principal: | Seixas, J |
---|---|
Lenguaje: | eng |
Publicado: |
1998
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/369624 |
Ejemplares similares
-
Neural networks and calorimeter cluster recognition
por: Altherr, Tanguy, et al.
Publicado: (1990) -
The Influence of Varying Pulse Shapes on the Energy Reconstruction of ATLAS Liquid Argon Calorimeter Signals using Convolutional Neural Networks
por: Gutsche, Christian
Publicado: (2022) -
An online neural network triggering system for the Tile Calorimeter
por: Damazio, D O, et al.
Publicado: (2002) -
Application of Machine Learning for Energy Reconstruction in the ATLAS Liquid Argon Calorimeter
por: Polson, Lucas Alexander
Publicado: (2021) -
ATLAS calorimeters energy calibration for jets
por: Astvatsaturov, A R, et al.
Publicado: (1995)