Cargando…
Duality-invariant class of two-dimensional field theories
We construct a new class of two-dimensional field theories with target spaces that are finite multiparameter deformations of the usual coset G/H-spaces. They arise naturally, when certain models, related by Poisson-Lie T-duality, develop a local gauge invariance at specific points of their classical...
Autor principal: | |
---|---|
Lenguaje: | eng |
Publicado: |
1999
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1016/S0550-3213(99)00485-X http://cds.cern.ch/record/385927 |
_version_ | 1780893577429123072 |
---|---|
author | Sfetsos, Konstadinos |
author_facet | Sfetsos, Konstadinos |
author_sort | Sfetsos, Konstadinos |
collection | CERN |
description | We construct a new class of two-dimensional field theories with target spaces that are finite multiparameter deformations of the usual coset G/H-spaces. They arise naturally, when certain models, related by Poisson-Lie T-duality, develop a local gauge invariance at specific points of their classical moduli space. We show that canonical equivalences in this context can be formulated in loop space in terms of parafermionic-type algebras with a central extension. We find that the corresponding generating functionals are non-polynomial in the derivatives of the fields with respect to the space-like variable. After constructing models with three- and two-dimensional targets, we study renormalization group flows in this context. In the ultraviolet, in some cases, the target space of the theory reduces to a coset space or there is a fixed point where the theory becomes free. |
id | cern-385927 |
institution | Organización Europea para la Investigación Nuclear |
language | eng |
publishDate | 1999 |
record_format | invenio |
spelling | cern-3859272023-03-14T17:58:33Zdoi:10.1016/S0550-3213(99)00485-Xhttp://cds.cern.ch/record/385927engSfetsos, KonstadinosDuality-invariant class of two-dimensional field theoriesParticle Physics - TheoryWe construct a new class of two-dimensional field theories with target spaces that are finite multiparameter deformations of the usual coset G/H-spaces. They arise naturally, when certain models, related by Poisson-Lie T-duality, develop a local gauge invariance at specific points of their classical moduli space. We show that canonical equivalences in this context can be formulated in loop space in terms of parafermionic-type algebras with a central extension. We find that the corresponding generating functionals are non-polynomial in the derivatives of the fields with respect to the space-like variable. After constructing models with three- and two-dimensional targets, we study renormalization group flows in this context. In the ultraviolet, in some cases, the target space of the theory reduces to a coset space or there is a fixed point where the theory becomes free.We construct a new class of two-dimensional field theories with target spaces that are finite multiparameter deformations of the usual coset G/H-spaces. They arise naturally, when certain models, related by Poisson-Lie T-duality, develop a local gauge invariance at specific points of their classical moduli space. We show that canonical equivalences in this context can be formulated in loop space in terms of parafermionic-type algebras with a central extension. We find that the corresponding generating functionals are non-polynomial in the derivatives of the fields with respect to the space-like variable. After constructing models with three- and two-dimensional targets, we study renormalization group flows in this context. In the ultraviolet, in some cases, the target space of the theory reduces to a coset space or there is a fixed point where the theory becomes free.We construct a new class of two-dimensional field theories with target spaces that are finite multiparameter deformations of the usual coset G/H-spaces. They arise naturally, when certain models, related by Poisson-Lie T-duality, develop a local gauge invariance at specific points of their classical moduli space. We show that canonical equivalences in this context can be formulated in loop space in terms of parafermionic-type algebras with a central extension. We find that the corresponding generating functionals are non-polynomial in the derivatives of the fields with respect to the space-like variable. After constructing models with three- and two-dimensional targets, we study renormalization group flows in this context. In the ultraviolet, in some cases, the target space of the theory reduces to a coset space or there is a fixed point where the theory becomes free.We construct a new class of two-dimensional field theories with target spaces that are finite multiparameter deformations of the usual coset G/H-spaces. They arise naturally, when certain models, related by Poisson-Lie T-duality, develop a local gauge invariance at specific points of their classical moduli space. We show that canonical equivalences in this context can be formulated in loop space in terms of parafermionic-type algebras with a central extension. We find that the corresponding generating functionals are non-polynomial in the derivatives of the fields with respect to the space-like variable. After constructing models with three- and two-dimensional targets, we study renormalization group flows in this context. In the ultraviolet, in some cases, the target space of the theory reduces to a coset space or there is a fixed point where the theory becomes free.We construct a new class of two-dimensional field theories with target spaces that are finite multiparameter deformations of the usual coset G/H-spaces. They arise naturally, when certain models, related by Poisson-Lie T-duality, develop a local gauge invariance at specific points of their classical moduli space. We show that canonical equivalences in this context can be formulated in loop space in terms of parafermionic-type algebras with a central extension. We find that the corresponding generating functionals are non-polynomial in the derivatives of the fields with respect to the space-like variable. After constructing models with three- and two-dimensional targets, we study renormalization group flows in this context. In the ultraviolet, in some cases, the target space of the theory reduces to a coset space or there is a fixed point where the theory becomes free.We construct a new class of two-dimensional field theories with target spaces that are finite multiparameter deformations of the usual coset G / H -spaces. They arise naturally, when certain models, related by Poisson–Lie T-duality, develop a local gauge invariance at specific points of their classical moduli space. We show that canonical equivalences in this context can be formulated in loop space in terms of parafermionic-type algebras with a central extension. We find that the corresponding generating functionals are non-polynomial in the derivatives of the fields with respect to the space-like variable. After constructing models with three- and two-dimensional targets, we study renormalization group flows in this context. In the ultraviolet, in some cases, the target space of the theory reduces to a coset space or there is a fixed point where the theory becomes free.hep-th/9904188CERN-TH-99-112CERN-TH-99-112oai:cds.cern.ch:3859271999-04-28 |
spellingShingle | Particle Physics - Theory Sfetsos, Konstadinos Duality-invariant class of two-dimensional field theories |
title | Duality-invariant class of two-dimensional field theories |
title_full | Duality-invariant class of two-dimensional field theories |
title_fullStr | Duality-invariant class of two-dimensional field theories |
title_full_unstemmed | Duality-invariant class of two-dimensional field theories |
title_short | Duality-invariant class of two-dimensional field theories |
title_sort | duality-invariant class of two-dimensional field theories |
topic | Particle Physics - Theory |
url | https://dx.doi.org/10.1016/S0550-3213(99)00485-X http://cds.cern.ch/record/385927 |
work_keys_str_mv | AT sfetsoskonstadinos dualityinvariantclassoftwodimensionalfieldtheories |