Cargando…
On average properties of inhomogeneous fluids in general relativity; 1, dust cosmologies
For general relativistic spacetimes filled with irrotational `dust' a generalized form of Friedmann's equations for an `effective' expansion factor $a_D (t)$ of inhomogeneous cosmologies is derived. Contrary to the standard Friedmann equations, which hold for homogeneous-isotropic cos...
Autor principal: | |
---|---|
Lenguaje: | eng |
Publicado: |
1999
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1023/A:1001800617177 http://cds.cern.ch/record/389354 |
Sumario: | For general relativistic spacetimes filled with irrotational `dust' a generalized form of Friedmann's equations for an `effective' expansion factor $a_D (t)$ of inhomogeneous cosmologies is derived. Contrary to the standard Friedmann equations, which hold for homogeneous-isotropic cosmologies, the new equations include the `backreaction effect' of inhomogeneities on the average expansion of the model. A universal relation between `backreaction' and average scalar curvature is also given. For cosmologies whose averaged spatial scalar curvature is proportional to $a_D^{-2}$, the expansion law governing a generic domain can be found. However, as the general equations show, `backreaction' acts as to produce average curvature in the course of structure formation, even when starting with space sections that are spatially flat on average. |
---|