Cargando…
Wilson loops from multicentre and rotating branes, mass gaps and phase structure in gauge theories
Within the AdS/CFT correspondence we use multicentre D3-brane metrics to investigate Wilson loops and compute the associated heavy quark-antiquark potentials for the strongly coupled SU(N) super-Yang-Mills gauge theory, when the gauge symmetry is broken by the expectation values of the scalar fields...
Autores principales: | , |
---|---|
Lenguaje: | eng |
Publicado: |
1999
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.4310/ATMP.1999.v3.n4.a4 http://cds.cern.ch/record/391804 |
_version_ | 1780893753582551040 |
---|---|
author | Brandhuber, A. Sfetsos, K. |
author_facet | Brandhuber, A. Sfetsos, K. |
author_sort | Brandhuber, A. |
collection | CERN |
description | Within the AdS/CFT correspondence we use multicentre D3-brane metrics to investigate Wilson loops and compute the associated heavy quark-antiquark potentials for the strongly coupled SU(N) super-Yang-Mills gauge theory, when the gauge symmetry is broken by the expectation values of the scalar fields. For the case of a uniform distribution of D3-branes over a disc, we find that there exists a maximum separation beyond which there is no force between the quark and the antiquark, i.e. the screening is complete. We associate this phenomenon with the possible existence of a mass gap in the strongly coupled gauge theory. In the finite-temperature case, when the corresponding supergravity solution is a rotating D3-brane solution, there is a class of potentials interpolating between a Coulombic and a confining behaviour. However, above a certain critical value of the mass parameter, the potentials exhibit a behaviour characteristic of statistical systems undergoing phase transitions. The physical path preserves the concavity property of the potential and minimizes the energy. Using the same rotating-brane solutions, we also compute spatial Wilson loops, associated with the quark-antiquark potential in models of three-dimensional gauge theories at zero temperature, with similar results. |
id | cern-391804 |
institution | Organización Europea para la Investigación Nuclear |
language | eng |
publishDate | 1999 |
record_format | invenio |
spelling | cern-3918042023-03-14T19:57:40Zdoi:10.4310/ATMP.1999.v3.n4.a4http://cds.cern.ch/record/391804engBrandhuber, A.Sfetsos, K.Wilson loops from multicentre and rotating branes, mass gaps and phase structure in gauge theoriesParticle Physics - TheoryWithin the AdS/CFT correspondence we use multicentre D3-brane metrics to investigate Wilson loops and compute the associated heavy quark-antiquark potentials for the strongly coupled SU(N) super-Yang-Mills gauge theory, when the gauge symmetry is broken by the expectation values of the scalar fields. For the case of a uniform distribution of D3-branes over a disc, we find that there exists a maximum separation beyond which there is no force between the quark and the antiquark, i.e. the screening is complete. We associate this phenomenon with the possible existence of a mass gap in the strongly coupled gauge theory. In the finite-temperature case, when the corresponding supergravity solution is a rotating D3-brane solution, there is a class of potentials interpolating between a Coulombic and a confining behaviour. However, above a certain critical value of the mass parameter, the potentials exhibit a behaviour characteristic of statistical systems undergoing phase transitions. The physical path preserves the concavity property of the potential and minimizes the energy. Using the same rotating-brane solutions, we also compute spatial Wilson loops, associated with the quark-antiquark potential in models of three-dimensional gauge theories at zero temperature, with similar results.Within the AdS/CFT correspondence we use multicentre D3-brane metrics to investigate Wilson loops and compute the associated heavy quark-antiquark potentials for the strongly coupled SU(N) super-Yang-Mills gauge theory, when the gauge symmetry is broken by the expectation values of the scalar fields. For the case of a uniform distribution of D3-branes over a disc, we find that there exists a maximum separation beyond which there is no force between the quark and the antiquark, i.e. the screening is complete. We associate this phenomenon with the possible existence of a mass gap in the strongly coupled gauge theory. In the finite-temperature case, when the corresponding supergravity solution is a rotating D3-brane solution, there is a class of potentials interpolating between a Coulombic and a confining behaviour. However, above a certain critical value of the mass parameter, the potentials exhibit a behaviour characteristic of statistical systems undergoing phase transitions. The physical path preserves the concavity property of the potential and minimizes the energy. Using the same rotating-brane solutions, we also compute spatial Wilson loops, associated with the quark-antiquark potential in models of three-dimensional gauge theories at zero temperature, with similar results.hep-th/9906201CERN-TH-99-191CERN-TH-99-191oai:cds.cern.ch:3918041999-06-28 |
spellingShingle | Particle Physics - Theory Brandhuber, A. Sfetsos, K. Wilson loops from multicentre and rotating branes, mass gaps and phase structure in gauge theories |
title | Wilson loops from multicentre and rotating branes, mass gaps and phase structure in gauge theories |
title_full | Wilson loops from multicentre and rotating branes, mass gaps and phase structure in gauge theories |
title_fullStr | Wilson loops from multicentre and rotating branes, mass gaps and phase structure in gauge theories |
title_full_unstemmed | Wilson loops from multicentre and rotating branes, mass gaps and phase structure in gauge theories |
title_short | Wilson loops from multicentre and rotating branes, mass gaps and phase structure in gauge theories |
title_sort | wilson loops from multicentre and rotating branes, mass gaps and phase structure in gauge theories |
topic | Particle Physics - Theory |
url | https://dx.doi.org/10.4310/ATMP.1999.v3.n4.a4 http://cds.cern.ch/record/391804 |
work_keys_str_mv | AT brandhubera wilsonloopsfrommulticentreandrotatingbranesmassgapsandphasestructureingaugetheories AT sfetsosk wilsonloopsfrommulticentreandrotatingbranesmassgapsandphasestructureingaugetheories |