Cargando…
Self-gravitating fundamental strings and black-holes
The configuration of typical highly excited (M >> M_s ~ (alpha')^{-1/2}) string states is considered as the string coupling g is adiabatically increased. The size distribution of very massive single string states is studied and the mass shift, due to long-range gravitational, dilatonic an...
Autores principales: | , |
---|---|
Lenguaje: | eng |
Publicado: |
1999
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1016/S0550-3213(99)00596-9 http://cds.cern.ch/record/392840 |
Sumario: | The configuration of typical highly excited (M >> M_s ~ (alpha')^{-1/2}) string states is considered as the string coupling g is adiabatically increased. The size distribution of very massive single string states is studied and the mass shift, due to long-range gravitational, dilatonic and axionic attraction, is estimated. By combining the two effects, in any number of spatial dimensions d, the most probable size of a string state becomes of order l_s = sqrt{2 alpha'} when g^2 M / M_s ~ 1. Depending on the dimension d, the transition between a random-walk-size string state (for low g) and a compact (~ l_s) string state (when g^2 M / M_s ~ 1) can be very gradual (d=3), fast but continuous (d=4), or discontinuous (d > 4). Those compact string states look like nuggets of an ultradense state of string matter, with energy density rho ~ g^{-2} M_s^{d+1}. Our results extend and clarify previous work by Susskind, and by Horowitz and Polchinski, on the correspondence between self-gravitating string states and black holes. |
---|