Cargando…
Probing the $WW \gamma$ vertex at hadron colliders
We present a new, model independent method for extracting bounds for the anomalous $\gamma WW$ couplings from hadron collider experiments. At the partonic level we introduce a set of three observables which are constructed from the unpolarized differential cross-section for the process $d\bar{u}\to...
Autores principales: | , |
---|---|
Lenguaje: | eng |
Publicado: |
1999
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1103/PhysRevD.60.113007 http://cds.cern.ch/record/393610 |
Sumario: | We present a new, model independent method for extracting bounds for the anomalous $\gamma WW$ couplings from hadron collider experiments. At the partonic level we introduce a set of three observables which are constructed from the unpolarized differential cross-section for the process $d\bar{u}\to W^{-}\gamma$ by appropriate convolution with a set of simple polynomials depending only on the center-of-mass angle. One of these observables allows for the direct determination of the anomalous coupling usually denoted by presence of a radiation zero. The other two observables impose two sum rules on the remaining three anomalous couplings. The inclusion of the structure functions is discussed in detail for both $p\bar{p}$ and $pp$ colliders. We show that, whilst for $p\bar{p}$ experiments this can be accomplished straightforwardly, in the $pp$ case one has to resort to somewhat more elaborate techniques, such as the binning of events according to their longitudinal momenta. |
---|