Cargando…

A Semianalytical Method to Solve Altarelli-Parisi Evolution Equations

We discuss a new method to solve in a semianalytical way the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi evolution equations at NLO order in the x-space. The method allows to construct an evolution operator expressed in form of a rapidly convergent series of matrices, depending only on the splitting...

Descripción completa

Detalles Bibliográficos
Autores principales: Santorelli, P, Scrimieri, E
Lenguaje:eng
Publicado: 1999
Materias:
Acceso en línea:https://dx.doi.org/10.22323/1.001.0023
http://cds.cern.ch/record/399167
_version_ 1780894045279617024
author Santorelli, P
Scrimieri, E
author_facet Santorelli, P
Scrimieri, E
author_sort Santorelli, P
collection CERN
description We discuss a new method to solve in a semianalytical way the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi evolution equations at NLO order in the x-space. The method allows to construct an evolution operator expressed in form of a rapidly convergent series of matrices, depending only on the splitting functions. This operator, acting on a generic initial distribution, provides a very accurate solution in a short computer time (only a few hundredth of second). As an example, we apply the method, useful to solve a wide class of systems of integrodifferential equations, to the polarized parton distributions
id cern-399167
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 1999
record_format invenio
spelling cern-3991672019-09-30T06:29:59Zdoi:10.22323/1.001.0023http://cds.cern.ch/record/399167engSantorelli, PScrimieri, EA Semianalytical Method to Solve Altarelli-Parisi Evolution EquationsParticle Physics - PhenomenologyWe discuss a new method to solve in a semianalytical way the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi evolution equations at NLO order in the x-space. The method allows to construct an evolution operator expressed in form of a rapidly convergent series of matrices, depending only on the splitting functions. This operator, acting on a generic initial distribution, provides a very accurate solution in a short computer time (only a few hundredth of second). As an example, we apply the method, useful to solve a wide class of systems of integrodifferential equations, to the polarized parton distributionshep-ph/9909289BARI-TH-358DSF-99-31oai:cds.cern.ch:3991671999
spellingShingle Particle Physics - Phenomenology
Santorelli, P
Scrimieri, E
A Semianalytical Method to Solve Altarelli-Parisi Evolution Equations
title A Semianalytical Method to Solve Altarelli-Parisi Evolution Equations
title_full A Semianalytical Method to Solve Altarelli-Parisi Evolution Equations
title_fullStr A Semianalytical Method to Solve Altarelli-Parisi Evolution Equations
title_full_unstemmed A Semianalytical Method to Solve Altarelli-Parisi Evolution Equations
title_short A Semianalytical Method to Solve Altarelli-Parisi Evolution Equations
title_sort semianalytical method to solve altarelli-parisi evolution equations
topic Particle Physics - Phenomenology
url https://dx.doi.org/10.22323/1.001.0023
http://cds.cern.ch/record/399167
work_keys_str_mv AT santorellip asemianalyticalmethodtosolvealtarelliparisievolutionequations
AT scrimierie asemianalyticalmethodtosolvealtarelliparisievolutionequations
AT santorellip semianalyticalmethodtosolvealtarelliparisievolutionequations
AT scrimierie semianalyticalmethodtosolvealtarelliparisievolutionequations