Cargando…
Are we at the dawn of quantum-gravity phenomenology?
A handful of recent papers has been devoted to proposals of experiments capable of testing some candidate quantum-gravity phenomena. These lecture notes emphasize those aspects that are most relevant to the questions that come to mind when one is exposed for the first time to these research developm...
Autor principal: | |
---|---|
Lenguaje: | eng |
Publicado: |
1999
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/404987 |
Sumario: | A handful of recent papers has been devoted to proposals of experiments capable of testing some candidate quantum-gravity phenomena. These lecture notes emphasize those aspects that are most relevant to the questions that come to mind when one is exposed for the first time to these research developments: How come theory and experiments are finally meeting in spite of all the gloomy forecasts that pervade traditional reviews? Is this a case of theorists having put forward more and more speculative ideas until a point was reached at which conventional experiments could rule out the proposed phenomena? Or has there been such a remarkable improvement in experimental techniques and ideas that we are now capable of testing plausible candidate quantum-gravity phenomena? These questions are analysed rather carefully for the recent proposals of interferometry-based tests and tests using observations of gamma rays of astrophysical origin. I also briefly discuss other proposed experiments (including tests of quantum-gravity-induced decoherence using the neutral-kaon system and accelerator tests of models with large extra dimensions). The emerging picture suggests that we are finally starting the exploration of a large class of plausible quantum-gravity effects. However, our chances to obtain positive (discovery) experimental results depend crucially on the magnitude of these effects. In most cases the level of sensitivity that the relevant experiments should achieve within a few years corresponds to effects suppressed only linearly by the Planck length. |
---|