Cargando…
Vector Fields, Flows and Lie Groups of Diffeomorphisms
\sigma_{c+t} (x) = \sigma_c (\sigma_t (x)) \equiv \sigma_c \circ evolution equation implies at once the Gell-Mann-Low functional equation. The latter appears therefore as a trivial consequence of the existence of a vector field on the action's space of renormalized QFT.
Autor principal: | Peterman, A. |
---|---|
Lenguaje: | eng |
Publicado: |
1999
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1007/s100520000375 http://cds.cern.ch/record/412222 |
Ejemplares similares
-
Trace anomalies and cocycles of Weyl and diffeomorphism groups
por: Karakhanian, D R, et al.
Publicado: (1994) -
Diffeomorphism with some Sobolev metric, geodesic flow and integrable systems
por: Guha, P
Publicado: (1998) -
Area preserving diffeomorphisms and higher spin fields in two dimensions
por: Bakas, I
Publicado: (1989) -
Renormalization group flows and continual Lie algebras
por: Bakas, Ioannis
Publicado: (2003) -
The chirally split diffeomorphism anomaly and the $\mu$-holomorphic projective connection
por: Kachkachi, M, et al.
Publicado: (1999)