Cargando…
Short representations of SU(2,2/N) and harmonic superspace analyticity
We consider the harmonic superspaces associated to SU(2,2/N) superconformal algebras. For arbitrary N, we show that massless representations, other than the chiral ones, correspond to [N/2] ``elementary'' ultrashort analytic superfields whose first component is a scalar in the k antisymmet...
Autores principales: | , |
---|---|
Lenguaje: | eng |
Publicado: |
1999
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1023/A:1007641619266 http://cds.cern.ch/record/412659 |
Sumario: | We consider the harmonic superspaces associated to SU(2,2/N) superconformal algebras. For arbitrary N, we show that massless representations, other than the chiral ones, correspond to [N/2] ``elementary'' ultrashort analytic superfields whose first component is a scalar in the k antisymmetric irrep of SU(N) (k=1... [N/2]) with top spin $J_{\rm\scriptsize top}= (N/2-k/2,0)$. For N=2n we analyze UIR's obtained by tensoring the self-conjugate ultrashort multiplet $J_{\rm\scriptsize top}$= (n/2,0) and show that N-1 different basic products give rise to all possible UIR's with residual shortening. |
---|