Cargando…
A boundary-value problem for the equation $y'=\lambda f(x,y) + h(x,y) - g(x,y)y$
Autor principal: | Pomentale, T |
---|---|
Lenguaje: | eng |
Publicado: |
1974
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/415155 |
Ejemplares similares
-
A constructive theorem of existence and uniqueness for the problem y' = f(x,y,$\lambda$), y(a) = $\alpha$, y(b) = $\beta$
por: Pomentale, T
Publicado: (1975) -
Tables of the Bessel function Y0(x), Y1(x), K0(x), K1(x) 0 =< x =< 1
por: National Bureau of Standards. Washington, DC
Publicado: (1952) -
Tables of the Bessel functions: Y$_{0}$(x), Y$_{1}$(x), K$_{0}$(x), K$_{1}$(x) 0 $\leq$ x $\leq$ 1
por: National Bureau of Standards. Washington, DC
Publicado: (1952) -
Tables of Weber parabolic cylinder functions: giving solutions of the differential equation d2y/dx2 + (1/4x2-a)y=0
por: Miller, Jeffrey C P
Publicado: (1955) -
Differential equations with boundary value problems
por: Polking, John, et al.
Publicado: (2002)