Cargando…

Supernova Bounds on Majoron-emitting decays of light neutrinos

Neutrino masses arising from the spontaneous violation of ungauged lepton-number are accompanied by a physical Goldstone boson, generically called Majoron. In the high-density supernova medium the effects of Majoron-emitting neutrino decays are important even if they are suppressed in vacuo by small...

Descripción completa

Detalles Bibliográficos
Autores principales: Kachelriess, M, Tomás, R, Valle, José W F
Lenguaje:eng
Publicado: 2000
Materias:
Acceso en línea:https://dx.doi.org/10.1103/PhysRevD.62.023004
http://cds.cern.ch/record/419774
Descripción
Sumario:Neutrino masses arising from the spontaneous violation of ungauged lepton-number are accompanied by a physical Goldstone boson, generically called Majoron. In the high-density supernova medium the effects of Majoron-emitting neutrino decays are important even if they are suppressed in vacuo by small neutrino masses and/or small off-diagonal couplings. We reconsider the influence of these decays on the neutrino signal of supernovae in the light of recent Super-Kamiokande data on solar and atmospheric neutrinos. We find that majoron-neutrino coupling constants in the range $3\times 10^{-7}\lsim g\lsim of SN1987A. Then we discuss the potential of Superkamiokande and the Sudbury Neutrino Observatory to detect majoron neutrino interactions in the case of a future galactic supernova. We find that these experiments could probe majoron neutrino interactions with improved sensitivity.