Cargando…
Solutions of $D_{\alpha}$ = 0 from Homogeneous Invariant Functions
We prove that the existence of a homogeneous invariant of degree n for arepresentation of a semi-simple Lie group guarantees the existence ofnon-trivial solutions of D_{\alpha} = 0: these correspond to the maximum valueof the square of the invariant divided by the norm of the representation to then^...
Autor principal: | Buccella, F |
---|---|
Lenguaje: | eng |
Publicado: |
2000
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/425373 |
Ejemplares similares
-
Algebraic homogeneous spaces and invariant theory
por: Grosshans, Frank D
Publicado: (1997) -
Invariant function spaces on homogeneous manifolds of Lie groups and applications
por: Agranovskiĭ, M L
Publicado: (1993) -
Basic global relative invariants for homogeneous linear differential equations
por: Chalkley, Roger
Publicado: (2002) -
Harmonic oscillator pattern arising from an algebraic approach to chiral symmetry
por: Buccella, F
Publicado: (1971) -
Invariant probabilities of transition functions
por: Zaharopol, Radu
Publicado: (2014)