Cargando…

O(2) symmetry breaking vs. vortex loop percolation

We study with lattice Monte Carlo simulations the relation of global O(2) symmetry breaking in three dimensions to the properties of a geometrically defined vortex loop network. We find that different definitions of constructing a network lead to different results even in the thermodynamic limit, an...

Descripción completa

Detalles Bibliográficos
Autores principales: Kajantie, K., Laine, M., Neuhaus, T., Rajantie, A., Rummukainen, K.
Lenguaje:eng
Publicado: 2000
Materias:
Acceso en línea:https://dx.doi.org/10.1016/S0370-2693(00)00481-0
http://cds.cern.ch/record/432332
_version_ 1780895293498195968
author Kajantie, K.
Laine, M.
Neuhaus, T.
Rajantie, A.
Rummukainen, K.
author_facet Kajantie, K.
Laine, M.
Neuhaus, T.
Rajantie, A.
Rummukainen, K.
author_sort Kajantie, K.
collection CERN
description We study with lattice Monte Carlo simulations the relation of global O(2) symmetry breaking in three dimensions to the properties of a geometrically defined vortex loop network. We find that different definitions of constructing a network lead to different results even in the thermodynamic limit, and that with typical definitions the percolation transition does not coincide with the thermodynamic phase transition. These results show that geometrically defined
id cern-432332
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 2000
record_format invenio
spelling cern-4323322023-03-14T17:02:34Zdoi:10.1016/S0370-2693(00)00481-0http://cds.cern.ch/record/432332engKajantie, K.Laine, M.Neuhaus, T.Rajantie, A.Rummukainen, K.O(2) symmetry breaking vs. vortex loop percolationParticle Physics - LatticeWe study with lattice Monte Carlo simulations the relation of global O(2) symmetry breaking in three dimensions to the properties of a geometrically defined vortex loop network. We find that different definitions of constructing a network lead to different results even in the thermodynamic limit, and that with typical definitions the percolation transition does not coincide with the thermodynamic phase transition. These results show that geometrically definedWe study with lattice Monte Carlo simulations the relation of global O(2) symmetry breaking in three dimensions to the properties of a geometrically defined vortex loop network. We find that different definitions of constructing a network lead to different results even in the thermodynamic limit, and that with typical definitions the percolation transition does not coincide with the thermodynamic phase transition. These results show that geometrically defined percolation observables need not display universal properties related to the critical behaviour of the system, and do not in general survive in the field theory limit.hep-lat/0003020CERN-TH-2000-080NORDITA-2000-29-HECERN-TH-2000-080NORDITA-2000-29-HEoai:cds.cern.ch:4323322000-03-24
spellingShingle Particle Physics - Lattice
Kajantie, K.
Laine, M.
Neuhaus, T.
Rajantie, A.
Rummukainen, K.
O(2) symmetry breaking vs. vortex loop percolation
title O(2) symmetry breaking vs. vortex loop percolation
title_full O(2) symmetry breaking vs. vortex loop percolation
title_fullStr O(2) symmetry breaking vs. vortex loop percolation
title_full_unstemmed O(2) symmetry breaking vs. vortex loop percolation
title_short O(2) symmetry breaking vs. vortex loop percolation
title_sort o(2) symmetry breaking vs. vortex loop percolation
topic Particle Physics - Lattice
url https://dx.doi.org/10.1016/S0370-2693(00)00481-0
http://cds.cern.ch/record/432332
work_keys_str_mv AT kajantiek o2symmetrybreakingvsvortexlooppercolation
AT lainem o2symmetrybreakingvsvortexlooppercolation
AT neuhaust o2symmetrybreakingvsvortexlooppercolation
AT rajantiea o2symmetrybreakingvsvortexlooppercolation
AT rummukainenk o2symmetrybreakingvsvortexlooppercolation