Cargando…

Mesure De La Fraction D'evenements A Quatre Quarks Dans Les Desintegrations Multihadroniques Du Boson Z Au Lep

Cette thèse propose de tester la Chromodynamique Quantique (QCD) en effectuant une mesure précise d'une des trois constantes fondamentales du groupe de symétrie SU(3) utilisé pour décrire la physique des interactions fortes. Cette constante...

Descripción completa

Detalles Bibliográficos
Autor principal: Lefebvre, E
Lenguaje:fre
Publicado: Montréal U. 1999
Materias:
Acceso en línea:http://cds.cern.ch/record/451541
Descripción
Sumario:Cette th&egrave;se propose de tester la Chromodynamique Quantique (QCD) en effectuant une mesure pr&eacute;cise d'une des trois constantes fondamentales du groupe de sym&eacute;trie SU(3) utilis&eacute; pour d&eacute;crire la physique des interactions fortes. Cette constante fondamentale, appel&eacute;e <italic> T<sub>F</sub></italic>, est reli&eacute;e &agrave; certains &eacute;tats finaux sp&eacute;cifiques des d&eacute;sint&eacute;grations du Z<super>0</super>. Ces &eacute;tats apparaissent sous forme de perturbations du deuxi&egrave;me ordre en <math> <f> <g>a</g><inf>s</inf></f> </math> et sont illustr&eacute;s par des diagrammes de Feynman. &Agrave; cet ordre, la chromodynamique pr&eacute;voit deux types de diagrammes de Feynman distincts; le premier contient, un quark, un antiquark et deux gluons, et le second, deux quarks et deux antiquarks. La constante T<italic><sub>F</sub></italic> est directement proportionnelle &agrave; la fraction d'&eacute;v&eacute;nements &agrave; deux quarks et deux antiquarks qui est l'objet de notre mesure. Notre mesure est fond&eacute;e sur l'&eacute;tude des &eacute;v&eacute;nements &agrave; quatre partons dans l'&eacute;tat final. Ces quatre partons, en s'hadronisant, produisent quatre jets de particules qui peuvent &ecirc;tre d&eacute;tect&eacute;s exp&eacute;rimentalement et identifi&eacute;s &agrave; l'aide d'algorithmes de reconstruction des jets. Des observables angulaires nous permettent de faire une discrimination parmi les &eacute;tats finaux de la d&eacute;sint&eacute;gration du Z<super>0</super>, et ainsi d&eacute;terminer la valeur de la fraction d'&eacute;v&eacute;nements &agrave; deux quarks et deux antiquarks <italic> f<sub>q</sub></italic>. Cette fraction peut s'exprimer par le rapport de la fraction observ&eacute;e exp&eacute;rimentalement <math> <f> f<sup>ex</sup><inf>q</inf></f> </math> sur la fraction th&eacute;orique <math> <f> f<sup>th</sup><inf>q</inf></f> </math>, <display-math> <fd> <fl>R<inf><rm>4<mit>q</mit></rm></inf>=<fr><nu>f<sup>ex</sup><inf> q</inf></nu><de>f<sup>th</sup><inf>q</inf></de></fr>.</fl> </fd> </display-math> Afin d'am&eacute;liorer la mesure de cette fraction et de diminuer le bruit caus&eacute; par une contamination des &eacute;v&eacute;nements d'ordres sup&eacute;rieurs, nous avons d&eacute;veloppe une m&eacute;thode d'extrapolation. Cette m&eacute;thode s'appuie sur la caract&eacute;risation de l'espace de phase des &eacute;v&eacute;nements, exprim&eacute;e par les param&egrave;tres <italic> y<super>ij</super></italic>. Les mesures de <math> <f> R<inf><rm>4<mit>q</mit></rm></inf></f> </math> que nous obtenons sont: <display-math> <fd> <fl>R<inf><rm>4<mit>q</mit></rm></inf>=2,27<sup>+0,29</sup><inf> -0,56</inf></fl> </fd> </display-math>&agrave; l'aide d'une m&eacute;thode conventionnelle avec la condition de s&eacute;lection <italic>y</italic><super>34</super> > 0,020 > <italic>y</italic><super>45</super>, et<display- math> <fd> <fl>R<inf><rm>4<mit>q</mit></rm></inf>=1,22<sup>+0,56</sup><inf> -0,71</inf></fl> </fd> </display-math>&agrave; l'aide de notre m&eacute;thode d'extrapolation avec la condition de s&eacute;lection <italic>y</italic><super>34</super> > 0,020. Nous en concluons que notre m&eacute;thode d'extrapolation est efficace pour la r&eacute;duction du bruit de fond caus&eacute; par les &eacute;v&eacute;nements d'ordre sup&eacute;rieur, et qu'un bon accord est obtenu entre la mesure exp&eacute;rimentale et la pr&eacute;diction th&eacute;orique. La mesure dite conventionnelle permet d'appr&eacute;cier la r&eacute;duction de la contamination, sans laquelle, un &eacute;cart de plus de deux sigma appara&icirc;t entre la mesure et la pr&eacute;diction. L'ensemble de l'analyse, des graphiques, des tableaux, et des re&eacute;sultats des chapitres 3, 4, et 5 ainsi que des deux appendices, repr&eacute;sente la contribution personnelle, &agrave; cette &eacute;tude, de l'auteur de cette th&egrave;se.