Cargando…
Slow motion and metastability for a non local evolution equation
In this paper we consider a non local evolution mean field equation proving the existence of an invariant, unstable, one dimensional manifold connecting the critical droplet with the stable and the metastable phases. We prove that the points on the manifold are droplets longer or shorter than the cr...
Autores principales: | Buttà, P, De Masi, A |
---|---|
Lenguaje: | eng |
Publicado: |
2000
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/454185 |
Ejemplares similares
-
Galileo and the equations of motion
por: Boccaletti, Dino
Publicado: (2016) -
Action principle and equations of motion for nonabelian monopoles
por: Chan Hong Mo, et al.
Publicado: (1986) -
Gauge fields: classification and equations of motion
por: Carmeli, Moshe, et al.
Publicado: (1989) -
On a classical limit of the Dirac equation with an external electromagnetic field ; 1, proper-time evolution, Lorentz covariant expectation values and classical equations of motion
por: Arodz, H, et al.
Publicado: (1988) -
Equations of motion for elastic continuum in gravitational field
por: Sokolov, S N
Publicado: (1994)