Cargando…
Continuity of Hausdorff dimension of Julia-Lavaurs sets as a function of the phase
Let $ f_{0}(z)=z^{2}+1/4$ and $\Sigma $ the set of phases $\overline{\sigma \ }$ such that the critical point $ 0$ escapes in one step by the Lavaurs map $ g_{\sigma }$; it is a topological strip in the cylinder of phases whose boundary consists of two Jordan curves symmetric wrt $ \RR /\ZZ $. We pr...
Autores principales: | , |
---|---|
Lenguaje: | eng |
Publicado: |
2000
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/456563 |
_version_ | 1780896273400856576 |
---|---|
author | Urbanski, M Zinsmeister, M |
author_facet | Urbanski, M Zinsmeister, M |
author_sort | Urbanski, M |
collection | CERN |
description | Let $ f_{0}(z)=z^{2}+1/4$ and $\Sigma $ the set of phases $\overline{\sigma \ }$ such that the critical point $ 0$ escapes in one step by the Lavaurs map $ g_{\sigma }$; it is a topological strip in the cylinder of phases whose boundary consists of two Jordan curves symmetric wrt $ \RR /\ZZ $. We prove that if $ \overline{\sigma }_{n}\in \Sigma \ $converges to $ \overline{\sigma }\in \partial \Sigma $ in such a way that $ g_{\sigma _{n}}(0)$ converges to $ g_{\sigma }(0)$ along an external ray then the Hausdorff dimension of the Julia-lavaurs set $ J(f_{0},g_{\sigma_{n}})$ converges to the Hausdorff dimension of $J(f_{0},g_{\sigma })$. |
id | cern-456563 |
institution | Organización Europea para la Investigación Nuclear |
language | eng |
publishDate | 2000 |
record_format | invenio |
spelling | cern-4565632019-09-30T06:29:59Zhttp://cds.cern.ch/record/456563engUrbanski, MZinsmeister, MContinuity of Hausdorff dimension of Julia-Lavaurs sets as a function of the phaseMathematical Physics and MathematicsLet $ f_{0}(z)=z^{2}+1/4$ and $\Sigma $ the set of phases $\overline{\sigma \ }$ such that the critical point $ 0$ escapes in one step by the Lavaurs map $ g_{\sigma }$; it is a topological strip in the cylinder of phases whose boundary consists of two Jordan curves symmetric wrt $ \RR /\ZZ $. We prove that if $ \overline{\sigma }_{n}\in \Sigma \ $converges to $ \overline{\sigma }\in \partial \Sigma $ in such a way that $ g_{\sigma _{n}}(0)$ converges to $ g_{\sigma }(0)$ along an external ray then the Hausdorff dimension of the Julia-lavaurs set $ J(f_{0},g_{\sigma_{n}})$ converges to the Hausdorff dimension of $J(f_{0},g_{\sigma })$.IHES-M-2000-41oai:cds.cern.ch:4565632000 |
spellingShingle | Mathematical Physics and Mathematics Urbanski, M Zinsmeister, M Continuity of Hausdorff dimension of Julia-Lavaurs sets as a function of the phase |
title | Continuity of Hausdorff dimension of Julia-Lavaurs sets as a function of the phase |
title_full | Continuity of Hausdorff dimension of Julia-Lavaurs sets as a function of the phase |
title_fullStr | Continuity of Hausdorff dimension of Julia-Lavaurs sets as a function of the phase |
title_full_unstemmed | Continuity of Hausdorff dimension of Julia-Lavaurs sets as a function of the phase |
title_short | Continuity of Hausdorff dimension of Julia-Lavaurs sets as a function of the phase |
title_sort | continuity of hausdorff dimension of julia-lavaurs sets as a function of the phase |
topic | Mathematical Physics and Mathematics |
url | http://cds.cern.ch/record/456563 |
work_keys_str_mv | AT urbanskim continuityofhausdorffdimensionofjulialavaurssetsasafunctionofthephase AT zinsmeisterm continuityofhausdorffdimensionofjulialavaurssetsasafunctionofthephase |