Cargando…
Continuity of Hausdorff dimension of Julia-Lavaurs sets as a function of the phase
Let $ f_{0}(z)=z^{2}+1/4$ and $\Sigma $ the set of phases $\overline{\sigma \ }$ such that the critical point $ 0$ escapes in one step by the Lavaurs map $ g_{\sigma }$; it is a topological strip in the cylinder of phases whose boundary consists of two Jordan curves symmetric wrt $ \RR /\ZZ $. We pr...
Autores principales: | , |
---|---|
Lenguaje: | eng |
Publicado: |
2000
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/456563 |