Cargando…
Brane-Antibrane Systems on Calabi-Yau Spaces
We propose a correspondence between brane-antibrane systems and stable triples (E_1,E_2,T), where E_1,E_2 are holomorphic vector bundles and the tachyon T is a map between them. We demonstrate that, under the assumption of holomorphicity, the brane-antibrane field equations reduce to a set of vortex...
Autores principales: | Oz, Yaron, Pantev, Tony, Waldram, Daniel |
---|---|
Lenguaje: | eng |
Publicado: |
2000
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1088/1126-6708/2001/02/045 http://cds.cern.ch/record/459977 |
Ejemplares similares
-
Standard-Model Bundles on Non-Simply Connected Calabi-Yau Threefolds
por: Donagi, Ron, et al.
Publicado: (2000) -
Planar diagrams and Calabi-Yau spaces
por: Ferrari, F
Publicado: (2003) -
Type II branes from brane-antibrane in M-theory
por: Houart, Laurent, et al.
Publicado: (1999) -
Confinement and Non-perturbative Tachyons in Brane-Antibrane Systems
por: Gutierrez, Norberto, et al.
Publicado: (2008) -
Reflexive Numbers and Berger Graphs from Calabi-Yau Spaces
por: Lipatov, L.N., et al.
Publicado: (2005)