Cargando…

On the Mass and Inclination of the PSR J2019+2425 Binary System

We report on nine years of timing observations of PSR J2019+2425, a millisecond pulsar in a wide 76.5 day orbit with a white dwarf. We measure a significant change over time of the projected semi-major axis of the orbit, x-dot/x=(1.3+-0.2)x10^-15 s^-1, where x=(a sin i)/c. We attribute this to the p...

Descripción completa

Detalles Bibliográficos
Autores principales: Nice, D J, Splaver, E M, Stairs, I H
Lenguaje:eng
Publicado: 2001
Materias:
Acceso en línea:https://dx.doi.org/10.1086/319079
http://cds.cern.ch/record/471705
Descripción
Sumario:We report on nine years of timing observations of PSR J2019+2425, a millisecond pulsar in a wide 76.5 day orbit with a white dwarf. We measure a significant change over time of the projected semi-major axis of the orbit, x-dot/x=(1.3+-0.2)x10^-15 s^-1, where x=(a sin i)/c. We attribute this to the proper motion of the binary. This constrains the inclination angle to i<72 degrees, with a median likelihood value of 63 degrees. A similar limit on inclination angle arises from the lack of a detectable Shapiro delay signal. These limits on inclination angle, combined with a model of the evolution of the system, imply that the neutron star mass is at most 1.51 solar masses; the median likelihood value is 1.33 solar masses. In addition to these timing results, we present a polarization profile of this source. Fits of the linear polarization position angle to the rotating vector model indicate the magnetic axis is close to alignment with the rotation axis, alpha<30 degrees.