Cargando…

Monodromy Representations of the Braid Group

Chiral conformal blocks in a rational conformal field theory are a far going extension of Gauss hypergeometric functions. The associated monodromy representations of Artin's braid group capture the essence of the modern view on the subject, which originates in ideas of Riemann and Schwarz. Phys...

Descripción completa

Detalles Bibliográficos
Autores principales: Todorov, Ivan T., Hadjiivanov, Ludmil K.
Lenguaje:eng
Publicado: 2000
Materias:
Acceso en línea:https://dx.doi.org/10.1134/1.1432899
http://cds.cern.ch/record/480345
_version_ 1780896827960197120
author Todorov, Ivan T.
Hadjiivanov, Ludmil K.
author_facet Todorov, Ivan T.
Hadjiivanov, Ludmil K.
author_sort Todorov, Ivan T.
collection CERN
description Chiral conformal blocks in a rational conformal field theory are a far going extension of Gauss hypergeometric functions. The associated monodromy representations of Artin's braid group capture the essence of the modern view on the subject, which originates in ideas of Riemann and Schwarz. Physically, such monodromy representations correspond to a new type of braid group statistics, which may manifest itself in two-dimensional critical phenomena, e.g. in some exotic quantum Hall states. The associated primary fields satisfy R-matrix exchange relations. The description of the internal symmetry of such fields requires an extension of the concept of a group, thus giving room to quantum groups and their generalizations. We review the appearance of braid group representations in the space of solutions of the Knizhnik - Zamolodchikov equation, with an emphasis on the role of a regular basis of solutions which allows us to treat the case of indecomposable representations as well.
id cern-480345
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 2000
record_format invenio
spelling cern-4803452023-03-14T20:18:03Zdoi:10.1134/1.1432899http://cds.cern.ch/record/480345engTodorov, Ivan T.Hadjiivanov, Ludmil K.Monodromy Representations of the Braid GroupParticle Physics - TheoryChiral conformal blocks in a rational conformal field theory are a far going extension of Gauss hypergeometric functions. The associated monodromy representations of Artin's braid group capture the essence of the modern view on the subject, which originates in ideas of Riemann and Schwarz. Physically, such monodromy representations correspond to a new type of braid group statistics, which may manifest itself in two-dimensional critical phenomena, e.g. in some exotic quantum Hall states. The associated primary fields satisfy R-matrix exchange relations. The description of the internal symmetry of such fields requires an extension of the concept of a group, thus giving room to quantum groups and their generalizations. We review the appearance of braid group representations in the space of solutions of the Knizhnik - Zamolodchikov equation, with an emphasis on the role of a regular basis of solutions which allows us to treat the case of indecomposable representations as well.Chiral conformal blocks in a rational conformal field theory are a far going extension of Gauss hypergeometric functions. The associated monodromy representations of Artin's braid group capture the essence of the modern view on the subject, which originates in ideas of Riemann and Schwarz. Physically, such monodromy representations correspond to a new type of braid group statistics, which may manifest itself in two-dimensional critical phenomena, e.g. in some exotic quantum Hall states. The associated primary fields satisfy R-matrix exchange relations. The description of the internal symmetry of such fields requires an extension of the concept of a group, thus giving room to quantum groups and their generalizations. We review the appearance of braid group representations in the space of solutions of the Knizhnik - Zamolodchikov equation, with an emphasis on the role of a regular basis of solutions which allows us to treat the case of indecomposable representations as well.hep-th/0012099CERN-TH-2000-362CERN-TH-2000-362oai:cds.cern.ch:4803452000-12-12
spellingShingle Particle Physics - Theory
Todorov, Ivan T.
Hadjiivanov, Ludmil K.
Monodromy Representations of the Braid Group
title Monodromy Representations of the Braid Group
title_full Monodromy Representations of the Braid Group
title_fullStr Monodromy Representations of the Braid Group
title_full_unstemmed Monodromy Representations of the Braid Group
title_short Monodromy Representations of the Braid Group
title_sort monodromy representations of the braid group
topic Particle Physics - Theory
url https://dx.doi.org/10.1134/1.1432899
http://cds.cern.ch/record/480345
work_keys_str_mv AT todorovivant monodromyrepresentationsofthebraidgroup
AT hadjiivanovludmilk monodromyrepresentationsofthebraidgroup