Cargando…
Wilsonian effective action for SU(2) Yang-Mills theory with Cho-Faddeev-Niemi-Shabanov decomposition
The Cho-Faddeev-Niemi-Shabanov decomposition of the SU(2) Yang-Mills field is employed for the calculation of the corresponding Wilsonian effective action to one-loop order with covariant gauge fixing. The generation of a mass scale is observed, and the flow of the marginal couplings is studied. Our...
Autor principal: | |
---|---|
Lenguaje: | eng |
Publicado: |
2001
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1103/PhysRevD.63.125023 http://cds.cern.ch/record/486381 |
Sumario: | The Cho-Faddeev-Niemi-Shabanov decomposition of the SU(2) Yang-Mills field is employed for the calculation of the corresponding Wilsonian effective action to one-loop order with covariant gauge fixing. The generation of a mass scale is observed, and the flow of the marginal couplings is studied. Our results indicate that higher-derivative terms of the color-unit-vector $\mathbf{n}$ field are necessary for the description of topologically stable knotlike solitons which have been conjectured to be the large-distance degrees of freedom. |
---|