Cargando…

High-resolution TOF with RPCs

In this work we describe some recent results concerning the application of Resistive Plate Chambers operated in avalanche mode at atmospheric pressure for high-resolution time-of-flight measurements. A combination of multiple, mechanically accurate, thin gas gaps and state-of-the-art electronics yie...

Descripción completa

Detalles Bibliográficos
Autores principales: Fonte, P., Peskov, V.
Lenguaje:eng
Publicado: 2001
Materias:
Acceso en línea:https://dx.doi.org/10.1016/S0168-9002(01)01914-3
http://cds.cern.ch/record/491918
_version_ 1780897066403233792
author Fonte, P.
Peskov, V.
author_facet Fonte, P.
Peskov, V.
author_sort Fonte, P.
collection CERN
description In this work we describe some recent results concerning the application of Resistive Plate Chambers operated in avalanche mode at atmospheric pressure for high-resolution time-of-flight measurements. A combination of multiple, mechanically accurate, thin gas gaps and state-of-the-art electronics yielded an overall (detector plus electronics) timing accuracy better than 50 ps sigma with a detection efficiency up to 99% for MIPs. Single gap chambers were also tested in order to clarify experimentally several aspects of the mode of operation of these detectors. These results open perspectives of affordable and reliable high granularity large area TOF detectors, with an efficiency and time resolution comparable to the existing scintillator-based TOF technology but with a significantly, up to an order of magnitude, lower price per channel.
id cern-491918
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 2001
record_format invenio
spelling cern-4919182023-03-14T18:42:05Zdoi:10.1016/S0168-9002(01)01914-3http://cds.cern.ch/record/491918engFonte, P.Peskov, V.High-resolution TOF with RPCsOther Fields of PhysicsIn this work we describe some recent results concerning the application of Resistive Plate Chambers operated in avalanche mode at atmospheric pressure for high-resolution time-of-flight measurements. A combination of multiple, mechanically accurate, thin gas gaps and state-of-the-art electronics yielded an overall (detector plus electronics) timing accuracy better than 50 ps sigma with a detection efficiency up to 99% for MIPs. Single gap chambers were also tested in order to clarify experimentally several aspects of the mode of operation of these detectors. These results open perspectives of affordable and reliable high granularity large area TOF detectors, with an efficiency and time resolution comparable to the existing scintillator-based TOF technology but with a significantly, up to an order of magnitude, lower price per channel.In this work we describe some recent results concerning the application of Resistive Plate Chambers operated in avalanche mode at atmospheric pressure for high-resolution time-of-flight measurements. A combination of multiple, mechanically accurate, thin gas gaps and state-of-the-art electronics yielded an overall (detector plus electronics) timing accuracy better than 50 ps sigma with a detection efficiency up to 99% for MIPs. Single gap chambers were also tested in order to clarify experimentally several aspects of the mode of operation of these detectors. These results open perspectives of affordable and reliable high granularity large area TOF detectors, with an efficiency and time resolution comparable to the existing scintillator-based TOF technology but with a significantly, up to an order of magnitude, lower price per channel.In this work we describe some recent results concerning the application of Resistive Plate Chambers operated in avalanche mode at atmospheric pressure for high-resolution time-of-flight measurements. A combination of multiple, mechanically accurate, thin gas gaps and state-of-the-art electronics yielded an overall (detector plus electronics) timing accuracy better than 50 ps sigma with a detection efficiency up to 99% for MIPs. Single gap chambers were also tested in order to clarify experimentally several aspects of the mode of operation of these detectors. These results open perspectives of affordable and reliable high granularity large area TOF detectors, with an efficiency and time resolution comparable to the existing scintillator-based TOF technology but with a significantly, up to an order of magnitude, lower price per channel.In this work we describe some recent results concerning the application of Resistive Plate Chambers operated in avalanche mode at atmospheric pressure for high-resolution time-of-flight measurements. A combination of multiple, mechanically accurate, thin gas gaps and state-of-the-art electronics yielded an overall (detector plus electronics) timing accuracy better than 50 ps sigma with a detection efficiency up to 99% for MIPs. Single gap chambers were also tested in order to clarify experimentally several aspects of the mode of operation of these detectors. These results open perspectives of affordable and reliable high granularity large area TOF detectors, with an efficiency and time resolution comparable to the existing scintillator-based TOF technology but with a significantly, up to an order of magnitude, lower price per channel.In this work, we describe some recent results concerning the application of Resistive Plate Chambers operated in avalanche mode at atmospheric pressure for high-resolution time-of-flight measurements. A combination of multiple, mechanically accurate, thin gas gaps and state-of-the-art electronics yielded an overall (detector plus electronics) timing accuracy better than 50 ps σ with a detection efficiency up to 99% for MIPs. Single gap chambers were also tested in order to clarify experimentally several aspects of the mode of operation of these detectors. These results open perspectives of affordable and reliable high granularity large area TOF detectors, with an efficiency and time resolution comparable to the existing scintillator-based TOF technology but with a significantly, up to an order of magnitude, lower price per channel.physics/0103057LIP-00-04LIP-2000-04oai:cds.cern.ch:4919182001
spellingShingle Other Fields of Physics
Fonte, P.
Peskov, V.
High-resolution TOF with RPCs
title High-resolution TOF with RPCs
title_full High-resolution TOF with RPCs
title_fullStr High-resolution TOF with RPCs
title_full_unstemmed High-resolution TOF with RPCs
title_short High-resolution TOF with RPCs
title_sort high-resolution tof with rpcs
topic Other Fields of Physics
url https://dx.doi.org/10.1016/S0168-9002(01)01914-3
http://cds.cern.ch/record/491918
work_keys_str_mv AT fontep highresolutiontofwithrpcs
AT peskovv highresolutiontofwithrpcs