Cargando…
Using neural networks to speed up optimization algorithms
The paper presents the application of radial-basis-function (RBF) neural networks to speed up deterministic search algorithms used for the design and optimization of superconducting LHC magnets. The optimization of the iron yoke of the main dipoles requires a number of numerical field computations p...
Autores principales: | Bazan, M, Russenschuck, Stephan |
---|---|
Lenguaje: | eng |
Publicado: |
2000
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1051/epjap:2000177 http://cds.cern.ch/record/502990 |
Ejemplares similares
-
An Improved Method using RBF Neural Networks to Speed up Optimization Algorithms
por: Aleksa, Martin, et al.
Publicado: (2001) -
An improved method using radial basis function neural networks to speed up optimization algorithms
por: Bazan, M, et al.
Publicado: (2002) -
Genetic Algorithms for the Optimal Design of Superconducting Accelerator Magnets
por: Ramberger, S, et al.
Publicado: (1999) -
Genetic Algorithms with Niching for Conceptual Design Studies
por: Ramberger, S, et al.
Publicado: (1997) -
Pareto-optimization in computational electromagnetics
por: Russenschuck, Stephan
Publicado: (1993)