Cargando…

Numerical Evaluation of Harmonic Polylogarithms

Harmonic polylogarithms $\H(\vec{a};x)$, a generalization of Nielsen's polylogarithms ${S}_{n,p}(x)$, appear frequently in analytic calculations of radiative corrections in quantum field theory. We present an algorithm for the numerical evaluation of harmonic polylogarithms of arbitrary real ar...

Descripción completa

Detalles Bibliográficos
Autores principales: Gehrmann, T., Remiddi, E.
Lenguaje:eng
Publicado: 2001
Materias:
Acceso en línea:https://dx.doi.org/10.1016/S0010-4655(01)00411-8
http://cds.cern.ch/record/509396
Descripción
Sumario:Harmonic polylogarithms $\H(\vec{a};x)$, a generalization of Nielsen's polylogarithms ${S}_{n,p}(x)$, appear frequently in analytic calculations of radiative corrections in quantum field theory. We present an algorithm for the numerical evaluation of harmonic polylogarithms of arbitrary real argument. This algorithm is implemented into a FORTRAN subroutine hplog to compute harmonic polylogarithms up to weight 4.