Cargando…

Quench Heater Studies for the LHC Magnets

About 2000 LHC (CERN's Large Hadron Collider) superconducting magnets will be protected with quench heaters against development of excessive voltage and overheating after a resistive transition. The quench heater strips are powered by capacitor bank discharge power supplies. The strips are made...

Descripción completa

Detalles Bibliográficos
Autores principales: Rodríguez-Mateos, F, Sonnemann, F
Lenguaje:eng
Publicado: 2001
Materias:
Acceso en línea:http://cds.cern.ch/record/514347
Descripción
Sumario:About 2000 LHC (CERN's Large Hadron Collider) superconducting magnets will be protected with quench heaters against development of excessive voltage and overheating after a resistive transition. The quench heater strips are powered by capacitor bank discharge power supplies. The strips are made of stainless steel partially plated with copper to reduce their resistance and to allow for the connection of quench heaters in series. The strips are embedded in between two polyimide foils. The initial power density and the current decay time determine the quench heater effectiveness. Since only one type of heater power supply will be available, the copper plating cycle is adapted for the various magnet types to keep the resistance of the heater circuit constant. Different quench heater designs have been tested on various prototype magnets to optimise the copper-plating cycle and the electric insulation of the heater strip. This paper summarises the experimental results and computations that allowed to finalise the heater strip layout for all LHC magnets.