Cargando…
How to Quantize Phases and Moduli!
A typical classical interference pattern of two waves with intensities I_1, I_2 and relative phase phi = phi_2-phi_1 may be characterized by the 3 observables p = sqrt{I_1 I_2}, p cos\phi and -p sin\phi. They are, e.g. the starting point for the semi-classical operational approach by Noh, Fougere an...
Autor principal: | |
---|---|
Lenguaje: | eng |
Publicado: |
2001
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/516435 |
_version_ | 1780897655129374720 |
---|---|
author | Kastrup, H.A. |
author_facet | Kastrup, H.A. |
author_sort | Kastrup, H.A. |
collection | CERN |
description | A typical classical interference pattern of two waves with intensities I_1, I_2 and relative phase phi = phi_2-phi_1 may be characterized by the 3 observables p = sqrt{I_1 I_2}, p cos\phi and -p sin\phi. They are, e.g. the starting point for the semi-classical operational approach by Noh, Fougere and Mandel (NFM) to the old and notorious phase problem in quantum optics. Following a recent group theoretical quantization of the symplectic space S = {(phi in R mod 2pi, p > 0)} in terms of irreducible unitary representations of the group SO(1,2) the present paper applies those results to that controversial problem of quantizing moduli and phases of complex numbers: The Poisson brackets of the classical observables p cos\phi, -p sin\phi and p > 0 form the Lie algebra of the group SO(1,2). The corresponding self-adjoint generators K_1, K_2 and K_3 of that group may be obtained from its irreducible unitary representations. For the positive discrete series the modulus operator K_3 has the spectrum {k+n, n = 0, 1,2,...; k > 0}. Self-adjoint operators for cos phi and sin phi can be defined as ((1/K_3)K_1 + K_1/K_3)/2 and -((1/K_3)K_2 + K_2/K_3)/2 which have the theoretically desired properties for k > or = 0.5. The approach advocated here solves, e.g. the modulus-phase quantization problem for the harmonic oscillator and appears to provide a full quantum theoretical basis for the NFM-formalism. |
id | cern-516435 |
institution | Organización Europea para la Investigación Nuclear |
language | eng |
publishDate | 2001 |
record_format | invenio |
spelling | cern-5164352023-05-11T03:05:06Zhttp://cds.cern.ch/record/516435engKastrup, H.A.How to Quantize Phases and Moduli!General Theoretical PhysicsA typical classical interference pattern of two waves with intensities I_1, I_2 and relative phase phi = phi_2-phi_1 may be characterized by the 3 observables p = sqrt{I_1 I_2}, p cos\phi and -p sin\phi. They are, e.g. the starting point for the semi-classical operational approach by Noh, Fougere and Mandel (NFM) to the old and notorious phase problem in quantum optics. Following a recent group theoretical quantization of the symplectic space S = {(phi in R mod 2pi, p > 0)} in terms of irreducible unitary representations of the group SO(1,2) the present paper applies those results to that controversial problem of quantizing moduli and phases of complex numbers: The Poisson brackets of the classical observables p cos\phi, -p sin\phi and p > 0 form the Lie algebra of the group SO(1,2). The corresponding self-adjoint generators K_1, K_2 and K_3 of that group may be obtained from its irreducible unitary representations. For the positive discrete series the modulus operator K_3 has the spectrum {k+n, n = 0, 1,2,...; k > 0}. Self-adjoint operators for cos phi and sin phi can be defined as ((1/K_3)K_1 + K_1/K_3)/2 and -((1/K_3)K_2 + K_2/K_3)/2 which have the theoretically desired properties for k > or = 0.5. The approach advocated here solves, e.g. the modulus-phase quantization problem for the harmonic oscillator and appears to provide a full quantum theoretical basis for the NFM-formalism.A typical classical interference pattern of two waves with intensities I_1, I_2 and relative phase phi = phi_2-phi_1 may be characterized by the 3 observables p = sqrt{I_1 I_2}, p cos\phi and -p sin\phi. They are, e.g. the starting point for the semi-classical operational approach by Noh, Fougeres and Mandel (NFM) to the old and notorious phase problem in quantum optics. Following a recent group theoretical quantization of the symplectic space S = {(phi in R mod 2pi, p > 0)} in terms of irreducible unitary representations of the group SO(1,2) the present paper applies those results to that controversial problem of quantizing moduli and phases of complex numbers: The Poisson brackets of the classical observables p cos\phi, -p sin\phi and p > 0 form the Lie algebra of the group SO(1,2). The corresponding self-adjoint generators K_1, K_2 and K_3 of that group may be obtained from its irreducible unitary representations. For the positive discrete series the modulus operator K_3 has the spectrum {k+n, n = 0, 1,2,...; k > 0}. Self-adjoint operators for cos phi and sin phi can be defined as ((1/K_3)K_1 + K_1/K_3)/2 and -((1/K_3)K_2 + K_2/K_3)/2 which have the theoretically desired properties for k > or = 0.5. The approach advocated here solves, e.g. the modulus-phase quantization problem for the harmonic oscillator and appears to provide a full quantum theoretical basis for the NFM-formalism.A typical classical interference pattern of two waves with intensities I_1, I_2 and relative phase phi = phi_2-phi_1 may be characterized by the 3 observables p = sqrt{I_1 I_2}, p cosϕ and -p sinϕ. They are, e.g. the starting point for the semi-classical operational approach by Noh, Fougeres and Mandel (NFM) to the old and notorious phase problem in quantum optics. Following a recent group theoretical quantization of the symplectic space S = {(phi in R mod 2pi, p > 0)} in terms of irreducible unitary representations of the group SO(1,2) the present paper applies those results to that controversial problem of quantizing moduli and phases of complex numbers: The Poisson brackets of the classical observables p cosϕ, -p sinϕ and p > 0 form the Lie algebra of the group SO(1,2). The corresponding self-adjoint generators K_1, K_2 and K_3 of that group may be obtained from its irreducible unitary representations. For the positive discrete series the modulus operator K_3 has the spectrum {k+n, n = 0, 1,2,...; k > 0}. Self-adjoint operators for cos phi and sin phi can be defined as ((1/K_3)K_1 + K_1/K_3)/2 and -((1/K_3)K_2 + K_2/K_3)/2 which have the theoretically desired properties for k > or = 0.5. The approach advocated here solves, e.g. the modulus-phase quantization problem for the harmonic oscillator and appears to provide a full quantum theoretical basis for the NFM-formalism.A typical classical interference pattern of two waves with intensities I_1, I_2 and relative phase phi = phi_2-phi_1 may be characterized by the 3 observables p = sqrt{I_1 I_2}, p cos\phi and -p sin\phi. They are, e.g. the starting point for the semi-classical operational approach by Noh, Fougeres and Mandel (NFM) to the old and notorious phase problem in quantum optics. Following a recent group theoretical quantization of the symplectic space S = {(phi in R mod 2pi, p > 0)} in terms of irreducible unitary representations of the group SO(1,2) the present paper applies those results to that controversial problem of quantizing moduli and phases of complex numbers: The Poisson brackets of the classical observables p cos\phi, -p sin\phi and p > 0 form the Lie algebra of the group SO(1,2). The corresponding self-adjoint generators K_1, K_2 and K_3 of that group may be obtained from its irreducible unitary representations. For the positive discrete series the modulus operator K_3 has the spectrum {k+n, n = 0, 1,2,...; k > 0}. Self-adjoint operators for cos phi and sin phi can be defined as ((1/K_3)K_1 + K_1/K_3)/2 and -((1/K_3)K_2 + K_2/K_3)/2 which have the theoretically desired properties for k > or = 0.5. The approach advocated here solves, e.g. the modulus-phase quantization problem for the harmonic oscillator and appears to provide a full quantum theoretical basis for the NFM-formalism.quant-ph/0109013CERN-TH/2001-238CERN-TH-2001-238CERN-TH-2001-238oai:cds.cern.ch:5164352001-09-03 |
spellingShingle | General Theoretical Physics Kastrup, H.A. How to Quantize Phases and Moduli! |
title | How to Quantize Phases and Moduli! |
title_full | How to Quantize Phases and Moduli! |
title_fullStr | How to Quantize Phases and Moduli! |
title_full_unstemmed | How to Quantize Phases and Moduli! |
title_short | How to Quantize Phases and Moduli! |
title_sort | how to quantize phases and moduli! |
topic | General Theoretical Physics |
url | http://cds.cern.ch/record/516435 |
work_keys_str_mv | AT kastrupha howtoquantizephasesandmoduli |