Cargando…
An Improved Method using RBF Neural Networks to Speed up Optimization Algorithms
The paper presents a method using Radial Basis Function (RBF) neural networks to speed up deterministic search algorithms used for the optimization of superconducting magnets for the LHC accelerator project at CERN. The optimization of the iron yoke of the main LHC dipoles requires a number of numer...
Autores principales: | Aleksa, Martin, Bazan, M, Russenschuck, Stephan |
---|---|
Lenguaje: | eng |
Publicado: |
2001
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/517565 |
Ejemplares similares
-
An improved method using radial basis function neural networks to speed up optimization algorithms
por: Bazan, M, et al.
Publicado: (2002) -
Using neural networks to speed up optimization algorithms
por: Bazan, M, et al.
Publicado: (2000) -
Genetic Algorithms for the Optimal Design of Superconducting Accelerator Magnets
por: Ramberger, S, et al.
Publicado: (1999) -
Performance of the RBF Neural Controller for Transient Stability Enhancement of Power System
por: Atanasova, T, et al.
Publicado: (1999) -
A New Optimized GA-RBF Neural Network Algorithm
por: Jia, Weikuan, et al.
Publicado: (2014)