Cargando…

Quenched Finite Volume Logarithms

Quenched chiral perturbation theory is used to compute the first finite volume correction to the chiral condensate. The correction diverges logarithmically with the four-volume $V$. We point out that with dynamical quarks one can obtain both the chiral condensate and the pion decay constant from the...

Descripción completa

Detalles Bibliográficos
Autor principal: Damgaard, P.H.
Lenguaje:eng
Publicado: 2001
Materias:
Acceso en línea:https://dx.doi.org/10.1016/S0550-3213(01)00269-3
http://cds.cern.ch/record/517836
_version_ 1780897715975094272
author Damgaard, P.H.
author_facet Damgaard, P.H.
author_sort Damgaard, P.H.
collection CERN
description Quenched chiral perturbation theory is used to compute the first finite volume correction to the chiral condensate. The correction diverges logarithmically with the four-volume $V$. We point out that with dynamical quarks one can obtain both the chiral condensate and the pion decay constant from the distributions of the lowest Dirac operator eigenvalues.
id cern-517836
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 2001
record_format invenio
spelling cern-5178362023-03-12T06:01:35Zdoi:10.1016/S0550-3213(01)00269-3http://cds.cern.ch/record/517836engDamgaard, P.H.Quenched Finite Volume LogarithmsParticle Physics - LatticeQuenched chiral perturbation theory is used to compute the first finite volume correction to the chiral condensate. The correction diverges logarithmically with the four-volume $V$. We point out that with dynamical quarks one can obtain both the chiral condensate and the pion decay constant from the distributions of the lowest Dirac operator eigenvalues.Quenched chiral perturbation theory is used to compute the first finite volume correction to the chiral condensate. The correction diverges logarithmically with the four-volume $V$. We point out that with dynamical quarks one can obtain both the chiral condensate and the pion decay constant from the distributions of the lowest Dirac operator eigenvalues.Quenched chiral perturbation theory is used to compute the first finite volume correction to the chiral condensate. The correction diverges logarithmically with the four-volume V . We point out that with dynamical quarks one can obtain both the chiral condensate and the pion decay constant from the distributions of the lowest Dirac operator eigenvalues.hep-lat/0105010CERN-TH-2001-127CERN-TH-2001-127oai:cds.cern.ch:5178362001
spellingShingle Particle Physics - Lattice
Damgaard, P.H.
Quenched Finite Volume Logarithms
title Quenched Finite Volume Logarithms
title_full Quenched Finite Volume Logarithms
title_fullStr Quenched Finite Volume Logarithms
title_full_unstemmed Quenched Finite Volume Logarithms
title_short Quenched Finite Volume Logarithms
title_sort quenched finite volume logarithms
topic Particle Physics - Lattice
url https://dx.doi.org/10.1016/S0550-3213(01)00269-3
http://cds.cern.ch/record/517836
work_keys_str_mv AT damgaardph quenchedfinitevolumelogarithms