Cargando…
Progress on the CLIC Linear Collider Study
The CLIC study aims at a multi-TeV, high luminosity e+e- linear collider design. Beam acceleration uses high frequency (30 GHz), normal conducting structures operating at high accelerating gradients, in order to reduce the length and, in consequence, the cost of the linac. The cost-effective RF powe...
Autor principal: | |
---|---|
Lenguaje: | eng |
Publicado: |
2001
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/519464 |
_version_ | 1780897764740169728 |
---|---|
author | Guignard, Gilbert |
author_facet | Guignard, Gilbert |
author_sort | Guignard, Gilbert |
collection | CERN |
description | The CLIC study aims at a multi-TeV, high luminosity e+e- linear collider design. Beam acceleration uses high frequency (30 GHz), normal conducting structures operating at high accelerating gradients, in order to reduce the length and, in consequence, the cost of the linac. The cost-effective RF power production scheme, based on the so-called Two-beam Acceleration method, enables electrons and positrons to be collided at energies ranging from ~ 0.1 TeV up to a maximum of 5 TeV, in stages. A road map has been drawn up to indicate the research and development necessary to demonstrate the technical feasibility of a 3 TeV centre-of-mass collider with a luminosity of 1035 cm-2s-1. Considerable progress has been made in meeting the challenges associated with the CLIC technology and the present paper briefly reviews some of them. In particular, the status is given of the studies on the CLIC high-gradient structures, the dynamic time-dependent effects, the stabilisation of the vibration and the beam delivery system. The recent development of the new test facility CTF3 is described. |
id | cern-519464 |
institution | Organización Europea para la Investigación Nuclear |
language | eng |
publishDate | 2001 |
record_format | invenio |
spelling | cern-5194642023-08-17T09:45:05Zhttp://cds.cern.ch/record/519464engGuignard, GilbertProgress on the CLIC Linear Collider StudyAccelerators and Storage RingsThe CLIC study aims at a multi-TeV, high luminosity e+e- linear collider design. Beam acceleration uses high frequency (30 GHz), normal conducting structures operating at high accelerating gradients, in order to reduce the length and, in consequence, the cost of the linac. The cost-effective RF power production scheme, based on the so-called Two-beam Acceleration method, enables electrons and positrons to be collided at energies ranging from ~ 0.1 TeV up to a maximum of 5 TeV, in stages. A road map has been drawn up to indicate the research and development necessary to demonstrate the technical feasibility of a 3 TeV centre-of-mass collider with a luminosity of 1035 cm-2s-1. Considerable progress has been made in meeting the challenges associated with the CLIC technology and the present paper briefly reviews some of them. In particular, the status is given of the studies on the CLIC high-gradient structures, the dynamic time-dependent effects, the stabilisation of the vibration and the beam delivery system. The recent development of the new test facility CTF3 is described.CERN-PS-2001-057-AECLIC-Note-499oai:cds.cern.ch:5194642001-09-17 |
spellingShingle | Accelerators and Storage Rings Guignard, Gilbert Progress on the CLIC Linear Collider Study |
title | Progress on the CLIC Linear Collider Study |
title_full | Progress on the CLIC Linear Collider Study |
title_fullStr | Progress on the CLIC Linear Collider Study |
title_full_unstemmed | Progress on the CLIC Linear Collider Study |
title_short | Progress on the CLIC Linear Collider Study |
title_sort | progress on the clic linear collider study |
topic | Accelerators and Storage Rings |
url | http://cds.cern.ch/record/519464 |
work_keys_str_mv | AT guignardgilbert progressonthecliclinearcolliderstudy |