Cargando…
Generalized Weyl Solutions
It was shown by Weyl that the general static axisymmetric solution of the vacuum Einstein equations in four dimensions is given in terms of a single axisymmetric solution of the Laplace equation in three-dimensional flat space. Weyl's construction is generalized here to arbitrary dimension $D\g...
Autores principales: | , |
---|---|
Lenguaje: | eng |
Publicado: |
2001
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1103/PhysRevD.65.084025 http://cds.cern.ch/record/524738 |
Sumario: | It was shown by Weyl that the general static axisymmetric solution of the vacuum Einstein equations in four dimensions is given in terms of a single axisymmetric solution of the Laplace equation in three-dimensional flat space. Weyl's construction is generalized here to arbitrary dimension $D\ge 4$. The general solution of the D-dimensional vacuum Einstein equations that admits D-2 orthogonal commuting non-null Killing vector fields is given either in terms of D-3 independent axisymmetric solutions of Laplace's equation in three-dimensional flat space or by D-4 independent solutions of Laplace's equation in two-dimensional flat space. Explicit examples of new solutions are given. These include a five-dimensional asymptotically flat ``black ring'' with an event horizon of topology S^1 x S^2 held in equilibrium by a conical singularity in the form of a disc. |
---|