Cargando…
$g_\mu$ - 2 in Supersymmetry
The 2.6 sigma deviation in the muon's anomalous magnetic moment has strong implications for supersymmetry. In the most model-independent analysis to date, we consider gaugino masses with arbitrary magnitude and phase, and sleptons with arbitrary masses and left-right mixings. For tan(beta)=50,...
Autores principales: | , |
---|---|
Lenguaje: | eng |
Publicado: |
2001
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/525226 |
Sumario: | The 2.6 sigma deviation in the muon's anomalous magnetic moment has strong implications for supersymmetry. In the most model-independent analysis to date, we consider gaugino masses with arbitrary magnitude and phase, and sleptons with arbitrary masses and left-right mixings. For tan(beta)=50, we find that 1 sigma agreement requires at least one charged superpartner with mass below 570 GeV; at 2 sigma, this upper bound shifts to 850 GeV. The deviation is remarkably consistent with all constraints from colliders, dark matter, and b -> s gamma in supergravity models, but disfavors the characteristic gaugino mass relations of anomaly-mediation. |
---|