Cargando…
Protecting LHC Components Against Radiation Resulting from Colliding Beam Interactions
Beam-induced energy deposition in the LHC high luminosity interaction region (IR) components due to both pp collisions and beam loss in the IR vicinity is a significant challenge for the design of the high luminosity insertions. It was shown in our previous studies that a set of collimators in the m...
Autores principales: | , |
---|---|
Lenguaje: | eng |
Publicado: |
2001
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/527220 |
_version_ | 1780897932705267712 |
---|---|
author | Mokhov, N V Rakhno, I L |
author_facet | Mokhov, N V Rakhno, I L |
author_sort | Mokhov, N V |
collection | CERN |
description | Beam-induced energy deposition in the LHC high luminosity interaction region (IR) components due to both pp collisions and beam loss in the IR vicinity is a significant challenge for the design of the high luminosity insertions. It was shown in our previous studies that a set of collimators in the machine and absorbers within the low-beta quadrupoles would reduce both the peak power density and total heat load to tolerable levels with a reasonable safety margin. In this paper the results of further optimization and comprehensive MARS calculations are briefly described for the updated IP1 and IP5 layouts and a base-line pp-collision source term. Power density, power dissipation, accumulated dose and residual dose rates are studied in the components of the inner triplets including their TAS absorbers, the TANneutral beam absorbers, separation dipoles, and quadrupoles of the outer triplets and possible collimators there. It is shown that the optimized absorbers and collimators provide adequate protection of all the critical components. |
id | cern-527220 |
institution | Organización Europea para la Investigación Nuclear |
language | eng |
publishDate | 2001 |
record_format | invenio |
spelling | cern-5272202023-05-31T13:22:24Zhttp://cds.cern.ch/record/527220engMokhov, N VRakhno, I LProtecting LHC Components Against Radiation Resulting from Colliding Beam InteractionsAccelerators and Storage RingsBeam-induced energy deposition in the LHC high luminosity interaction region (IR) components due to both pp collisions and beam loss in the IR vicinity is a significant challenge for the design of the high luminosity insertions. It was shown in our previous studies that a set of collimators in the machine and absorbers within the low-beta quadrupoles would reduce both the peak power density and total heat load to tolerable levels with a reasonable safety margin. In this paper the results of further optimization and comprehensive MARS calculations are briefly described for the updated IP1 and IP5 layouts and a base-line pp-collision source term. Power density, power dissipation, accumulated dose and residual dose rates are studied in the components of the inner triplets including their TAS absorbers, the TANneutral beam absorbers, separation dipoles, and quadrupoles of the outer triplets and possible collimators there. It is shown that the optimized absorbers and collimators provide adequate protection of all the critical components.LHC-Project-Report-477FERMILAB-CONF-2001-131CERN-LHC-Project-Report-477oai:cds.cern.ch:5272202001 |
spellingShingle | Accelerators and Storage Rings Mokhov, N V Rakhno, I L Protecting LHC Components Against Radiation Resulting from Colliding Beam Interactions |
title | Protecting LHC Components Against Radiation Resulting from Colliding Beam Interactions |
title_full | Protecting LHC Components Against Radiation Resulting from Colliding Beam Interactions |
title_fullStr | Protecting LHC Components Against Radiation Resulting from Colliding Beam Interactions |
title_full_unstemmed | Protecting LHC Components Against Radiation Resulting from Colliding Beam Interactions |
title_short | Protecting LHC Components Against Radiation Resulting from Colliding Beam Interactions |
title_sort | protecting lhc components against radiation resulting from colliding beam interactions |
topic | Accelerators and Storage Rings |
url | http://cds.cern.ch/record/527220 |
work_keys_str_mv | AT mokhovnv protectinglhccomponentsagainstradiationresultingfromcollidingbeaminteractions AT rakhnoil protectinglhccomponentsagainstradiationresultingfromcollidingbeaminteractions |