Cargando…

Numerical evaluation of two-dimensional harmonic polylogarithms

The two-dimensional harmonic polylogarithms $\G(\vec{a}(z);y)$, a generalization of the harmonic polylogarithms, themselves a generalization of Nielsen's polylogarithms, appear in analytic calculations of multi-loop radiative corrections in quantum field theory. We present an algorithm for the...

Descripción completa

Detalles Bibliográficos
Autores principales: Gehrmann, T., Remiddi, E.
Lenguaje:eng
Publicado: 2001
Materias:
Acceso en línea:https://dx.doi.org/10.1016/S0010-4655(02)00139-X
http://cds.cern.ch/record/527721
_version_ 1780897941467168768
author Gehrmann, T.
Remiddi, E.
author_facet Gehrmann, T.
Remiddi, E.
author_sort Gehrmann, T.
collection CERN
description The two-dimensional harmonic polylogarithms $\G(\vec{a}(z);y)$, a generalization of the harmonic polylogarithms, themselves a generalization of Nielsen's polylogarithms, appear in analytic calculations of multi-loop radiative corrections in quantum field theory. We present an algorithm for the numerical evaluation of two-dimensional harmonic polylogarithms, with the two arguments $y,z$ varying in the triangle $0\le y \le 1$, $ 0\le z \le 1$, $\ 0\le (y+z) \le 1$. This algorithm is implemented into a {\tt FORTRAN} subroutine {\tt tdhpl} to compute two-dimensional harmonic polylogarithms up to weight 4.
id cern-527721
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 2001
record_format invenio
spelling cern-5277212023-10-04T08:16:08Zdoi:10.1016/S0010-4655(02)00139-Xhttp://cds.cern.ch/record/527721engGehrmann, T.Remiddi, E.Numerical evaluation of two-dimensional harmonic polylogarithmsParticle Physics - PhenomenologyThe two-dimensional harmonic polylogarithms $\G(\vec{a}(z);y)$, a generalization of the harmonic polylogarithms, themselves a generalization of Nielsen's polylogarithms, appear in analytic calculations of multi-loop radiative corrections in quantum field theory. We present an algorithm for the numerical evaluation of two-dimensional harmonic polylogarithms, with the two arguments $y,z$ varying in the triangle $0\le y \le 1$, $ 0\le z \le 1$, $\ 0\le (y+z) \le 1$. This algorithm is implemented into a {\tt FORTRAN} subroutine {\tt tdhpl} to compute two-dimensional harmonic polylogarithms up to weight 4.The two-dimensional harmonic polylogarithms $\G(\vec{a}(z):y)$, a generalization of the harmonic polylogarithms, themselves a generalization of Nielsen's polylogarithms, appear in analytic calculations of multi-loop radiative corrections in quantum field theory. We present an algorithm for the numerical evaluation of two-dimensional harmonic polylogarithms, with the two arguments $y,z$ varying in the triangle $0\le y \le 1$, $ 0\le z \le 1$, $\ 0\le (y+z) \le 1$. This algorithm is implemented into a {\tt FORTRAN} subroutine {\tt tdhpl} to compute two-dimensional harmonic polylogarithms up to weight 4.hep-ph/0111255CERN-TH-2001-326CERN-TH-2001-326oai:cds.cern.ch:5277212001-11-21
spellingShingle Particle Physics - Phenomenology
Gehrmann, T.
Remiddi, E.
Numerical evaluation of two-dimensional harmonic polylogarithms
title Numerical evaluation of two-dimensional harmonic polylogarithms
title_full Numerical evaluation of two-dimensional harmonic polylogarithms
title_fullStr Numerical evaluation of two-dimensional harmonic polylogarithms
title_full_unstemmed Numerical evaluation of two-dimensional harmonic polylogarithms
title_short Numerical evaluation of two-dimensional harmonic polylogarithms
title_sort numerical evaluation of two-dimensional harmonic polylogarithms
topic Particle Physics - Phenomenology
url https://dx.doi.org/10.1016/S0010-4655(02)00139-X
http://cds.cern.ch/record/527721
work_keys_str_mv AT gehrmannt numericalevaluationoftwodimensionalharmonicpolylogarithms
AT remiddie numericalevaluationoftwodimensionalharmonicpolylogarithms