Cargando…
A fully integrated, low noise and low power BiCMOS front-end readout system for capacitive detectors
Bipolar transistors are interesting for low noise front-end readout systems when high speed and low power consumption are required. This paper presents a fully integrated, low noise front-end design for the future Large Hadron Collider (LHC) experiments using the radiation hard SOI BiCMOS process. I...
Autores principales: | , , , |
---|---|
Lenguaje: | eng |
Publicado: |
2001
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1023/A:1011283409193 http://cds.cern.ch/record/535989 |
Sumario: | Bipolar transistors are interesting for low noise front-end readout systems when high speed and low power consumption are required. This paper presents a fully integrated, low noise front-end design for the future Large Hadron Collider (LHC) experiments using the radiation hard SOI BiCMOS process. In the present prototype, the input-referred Equivalent Noise Charge (ENC) of 990 electrons (r.m.s.) for 12 pF detector capacitance with a shaping time of 25 ns and power consumption of 1.4 mW/channel has been measured. The gain of this front-end is 90 mV/MIP (Minimum Ionisation Particle: 1 MIP=3.84 fC) with non-linearity of less than 3% and linear input dynamic range is +or-5 MIP. These results are obtained at room temperature and before irradiation. The measurements after irradiations by high intensity pion beam with an integrated flux of 1.0*10/sup 14/ pions/cm/sup 2/ are also presented in this paper. (10 refs). |
---|