Cargando…

Design and Manufacture of the Superconducting Bus-bars for the LHC Main Magnets

The main magnets of the LHC are series-connected electrically in different powering circuits by means of superconducting bus-bars, carrying a maximum current of 13 kA. These superconducting bus-bars consist of a superconducting cable thermally and electrically coupled to a copper profile all along t...

Descripción completa

Detalles Bibliográficos
Autores principales: Belova, L M, Genet, M, Perinet-Marquet, J L, Ivanov, P, Urpin, C
Lenguaje:eng
Publicado: 2002
Materias:
Acceso en línea:https://dx.doi.org/10.1109/TASC.2002.1018642
http://cds.cern.ch/record/544651
Descripción
Sumario:The main magnets of the LHC are series-connected electrically in different powering circuits by means of superconducting bus-bars, carrying a maximum current of 13 kA. These superconducting bus-bars consist of a superconducting cable thermally and electrically coupled to a copper profile all along the length. The function of the copper profile is essentially to provide an alternative path for the current in case the superconducting cable loses its superconducting state and returns to normal state because of a transient disturbance or of a normal zone propagation coming from the neighbouring magnets. When a superconducting bus-bar quenches to normal state its temperature must always stay below a safe values of about 100°C while the copper is conducting. When a resistive transition is detected, the protection systems triggers the ramping down of the current from 13000 A to 0. The ramp rate must not exceed a maximum value to avoid the transition of magnets series-connected in the circuit. This paper concerns the design and the manufacture of the high current superconducting bus-bars needed to interconnect the magnetic elements of the main dipoles, the main quadrupoles of the arcs and of the dispersion suppressors of the LHC.