Cargando…
On the Calculation of Quantum Mechanical Ground States from Classical Geodesic Motion on Certain Spaces of Constant Negative Curvature
We consider geodesic motion on three-dimensional Riemannian manifolds of constant negative curvature, topologically equivalent to S x ]0,1[, S a compact surface of genus two. To those trajectories which are bounded and recurrent in both directions of the time evolution a fractal limit set is associa...
Autor principal: | Tomaschitz, R |
---|---|
Lenguaje: | eng |
Publicado: |
1989
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/545133 |
Ejemplares similares
-
Electric fields on a surface of constant negative curvature
por: Benetto, F, et al.
Publicado: (1997) -
Upper and lower bounds for the mass of the geodesic flow on graphs
por: Coornaert, M, et al.
Publicado: (1995) -
An Alternative to Wave Mechanics on Curved Spaces
por: Tomaschitz, R
Publicado: (1992) -
Quantum Chaos on Hyperbolic Manifolds: A New Approach to Cosmology
por: Tomaschitz, R
Publicado: (1992) -
Classical nonintegrability, quantum chaos
por: Knauf, A, et al.
Publicado: (1996)