Cargando…
Special geometry, cubic polynomials and homogeneous quaternionic spaces
The existing classification of homogeneous quaternionic spaces is not complete. We study these spaces in the context of certain $N=2$ supergravity theories, where dimensional reduction induces a mapping between {\em special} real, K\"ahler and quaternionic spaces. The geometry of the real space...
Autores principales: | de Wit, B., Van Proeyen, Antoine |
---|---|
Lenguaje: | eng |
Publicado: |
1992
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1007/BF02097627 http://cds.cern.ch/record/563057 |
Ejemplares similares
-
C - map, very special quaternionic geometry and dual Kahler spaces
por: D'Auria, R., et al.
Publicado: (2004) -
Broken sigma-model isometries in very special geometry
por: de Wit, Bernard, et al.
Publicado: (1992) -
Topics in Cubic Special Geometry
por: Bellucci, Stefano, et al.
Publicado: (2010) -
Scherk-Schwarz Reduction of D=5 Special and Quaternionic Geometry
por: Andrianopoli, Laura, et al.
Publicado: (2004) -
Quadratic Split Quaternion Polynomials: Factorization and Geometry
por: Scharler, Daniel F., et al.
Publicado: (2019)