Cargando…

Black and super p-branes in diverse dimensions

We present a generic Lagrangian, in arbitrary spacetime dimension $D$, describing the interaction of a dilaton, a graviton and an antisymmetric tensor of arbitrary rank $d$. For each $D$~and~$d$, we find ``solitonic'' black $\tilde{p}$-brane solutions where $\tilde{p} = \tilde{d} - 1$~and~...

Descripción completa

Detalles Bibliográficos
Autores principales: Duff, M.J., Lu, J.X.
Lenguaje:eng
Publicado: 1994
Materias:
Acceso en línea:https://dx.doi.org/10.1016/0550-3213(94)90586-X
http://cds.cern.ch/record/567838
Descripción
Sumario:We present a generic Lagrangian, in arbitrary spacetime dimension $D$, describing the interaction of a dilaton, a graviton and an antisymmetric tensor of arbitrary rank $d$. For each $D$~and~$d$, we find ``solitonic'' black $\tilde{p}$-brane solutions where $\tilde{p} = \tilde{d} - 1$~and~ $\tilde d = D - d - 2$. These solutions display a spacetime singularity surrounded by an event horizon, and are characterized by a mass per unit $\tilde p$-volume, ${\cal M}_{\tilde{d}}$, and topological ``magnetic'' charge $g_{\tilde{d}}$, obeying $\kappa {\cal M}_{\tilde{d}} \geq g_{\tilde{d}}/ \sqrt{2}$. In the extreme limit $\kappa {\cal M}_{\tilde{d}}=g_{\tilde{d}}/ \sqrt{2}$, the singularity and event horizon coalesce. For specific values of $D$~and~$d$, these extreme solutions also exhibit supersymmetry and may be identified with previously classified heterotic, Type IIA and Type IIB super $\tilde p$-branes. The theory also admits elementary $p$-brane solutions with ``electric'' Noether charge $e_d$, obeying the Dirac quantization rule $e_d g_{\tilde{d}} = 2\pi n$, $n =$~integer. We also present the Lagrangian describing the theory dual to the original theory, whose antisymmetric tensor has rank $\tilde{d}$ and for which the roles of topological and elementary solutions are interchanged. The super $p$-branes and their duals are mutually non-singular. As special cases of our general solution we recover the black $p$-branes of Horowitz and Strominger $(D = 10)$, Guven $(D = 11)$ and Gibbons et al $(D = 4)$, the $N = 1$, $N = 2a$~and~$N = 2b$ super-$p$-branes of Dabholkar et al $(4 \leq D \leq 10)$, Duff and Stelle $(D = 11)$, Duff and Lu $(D = 10)$ and Callan, Harvey and Strominger $(D = 10)$, and the axionic instanton of Rey $(D = 4)$. In particular, the electric/magnetic duality of Gibbons and Perry in $D = 4$ is seen to be a consequence of particle/sixbrane duality in $D = 10$. Among the new solutions is a self-dual superstring in $D = 6$.