Cargando…

The CKM Matrix and the Unitarity Triangle: Another Look

The rescaled unitarity triangle can be determined by means of two measurements of its sides or angles. Assuming the same relative errors on the angles $(\alpha,\beta,\gamma)$ and the sides $(R_b,R_t)$, we find that the pairs $(\gamma,\beta)$ and $(\gamma,R_b)$ are most efficient in determining $(\ba...

Descripción completa

Detalles Bibliográficos
Autores principales: Buras, Andrzej J., Parodi, Fabrizio, Stocchi, Achille
Lenguaje:eng
Publicado: 2002
Materias:
Acceso en línea:https://dx.doi.org/10.1088/1126-6708/2003/01/029
http://cds.cern.ch/record/568786
_version_ 1780899211609374720
author Buras, Andrzej J.
Parodi, Fabrizio
Stocchi, Achille
author_facet Buras, Andrzej J.
Parodi, Fabrizio
Stocchi, Achille
author_sort Buras, Andrzej J.
collection CERN
description The rescaled unitarity triangle can be determined by means of two measurements of its sides or angles. Assuming the same relative errors on the angles $(\alpha,\beta,\gamma)$ and the sides $(R_b,R_t)$, we find that the pairs $(\gamma,\beta)$ and $(\gamma,R_b)$ are most efficient in determining $(\bar\varrho,\bar\eta)$ that describe the apex of the unitarity triangle. They are followed by $(\alpha,\beta)$, $(\alpha,R_b)$, $(R_t,\beta)$, $(R_t,R_b)$ and $(R_b,\beta)$. As the set $\vus$, $\vcb$, $R_t$ and $\beta$ appears to be the best candidate for the fundamental set of flavour violating parameters in the coming years, we show various constraints on the CKM matrix in the $(R_t,\beta)$ plane. Using the best available input we determine the universal unitarity triangle for models with minimal flavour violation (MFV) and compare it with the one in the Standard Model. We present allowed ranges for $\sin 2\beta$, $\sin 2\alpha$, $\gamma$, $R_b$, $R_t$ and $\Delta M_s$ within the Standard Model and MFV models. We also update the allowed range for the function $F_{tt}$ that parametrizes various MFV-models.
id cern-568786
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 2002
record_format invenio
spelling cern-5687862023-03-14T19:53:04Zdoi:10.1088/1126-6708/2003/01/029http://cds.cern.ch/record/568786engBuras, Andrzej J.Parodi, FabrizioStocchi, AchilleThe CKM Matrix and the Unitarity Triangle: Another LookParticle Physics - PhenomenologyThe rescaled unitarity triangle can be determined by means of two measurements of its sides or angles. Assuming the same relative errors on the angles $(\alpha,\beta,\gamma)$ and the sides $(R_b,R_t)$, we find that the pairs $(\gamma,\beta)$ and $(\gamma,R_b)$ are most efficient in determining $(\bar\varrho,\bar\eta)$ that describe the apex of the unitarity triangle. They are followed by $(\alpha,\beta)$, $(\alpha,R_b)$, $(R_t,\beta)$, $(R_t,R_b)$ and $(R_b,\beta)$. As the set $\vus$, $\vcb$, $R_t$ and $\beta$ appears to be the best candidate for the fundamental set of flavour violating parameters in the coming years, we show various constraints on the CKM matrix in the $(R_t,\beta)$ plane. Using the best available input we determine the universal unitarity triangle for models with minimal flavour violation (MFV) and compare it with the one in the Standard Model. We present allowed ranges for $\sin 2\beta$, $\sin 2\alpha$, $\gamma$, $R_b$, $R_t$ and $\Delta M_s$ within the Standard Model and MFV models. We also update the allowed range for the function $F_{tt}$ that parametrizes various MFV-models.The unitarity triangle can be determined by means of two measurements of its sides or angles. Assuming the same relative errors on the angles $(\alpha,\beta,\gamma)$ and the sides $(R_b,R_t)$, we find that the pairs $(\gamma,\beta)$ and $(\gamma,R_b)$ are most efficient in determining $(\bar\varrho,\bar\eta)$ that describe the apex of the unitarity triangle. They are followed by $(\alpha,\beta)$, $(\alpha,R_b)$, $(R_t,\beta)$, $(R_t,R_b)$ and $(R_b,\beta)$. As the set $\vus$, $\vcb$, $R_t$ and $\beta$ appears to be the best candidate for the fundamental set of flavour violating parameters in the coming years, we show various constraints on the CKM matrix in the $(R_t,\beta)$ plane. Using the best available input we determine the universal unitarity triangle for models with minimal flavour violation (MFV) and compare it with the one in the Standard Model. We present allowed ranges for $\sin 2\beta$, $\sin 2\alpha$, $\gamma$, $R_b$, $R_t$ and $\Delta M_s$ within the Standard Model and MFV models. We also update the allowed range for the function $F_{tt}$ that parametrizes various MFV-models.hep-ph/0207101TUM-HEP-465-02LAL-02-39LAL-2002-39TUM-HEP-465oai:cds.cern.ch:5687862002-07-07
spellingShingle Particle Physics - Phenomenology
Buras, Andrzej J.
Parodi, Fabrizio
Stocchi, Achille
The CKM Matrix and the Unitarity Triangle: Another Look
title The CKM Matrix and the Unitarity Triangle: Another Look
title_full The CKM Matrix and the Unitarity Triangle: Another Look
title_fullStr The CKM Matrix and the Unitarity Triangle: Another Look
title_full_unstemmed The CKM Matrix and the Unitarity Triangle: Another Look
title_short The CKM Matrix and the Unitarity Triangle: Another Look
title_sort ckm matrix and the unitarity triangle: another look
topic Particle Physics - Phenomenology
url https://dx.doi.org/10.1088/1126-6708/2003/01/029
http://cds.cern.ch/record/568786
work_keys_str_mv AT burasandrzejj theckmmatrixandtheunitaritytriangleanotherlook
AT parodifabrizio theckmmatrixandtheunitaritytriangleanotherlook
AT stocchiachille theckmmatrixandtheunitaritytriangleanotherlook
AT burasandrzejj ckmmatrixandtheunitaritytriangleanotherlook
AT parodifabrizio ckmmatrixandtheunitaritytriangleanotherlook
AT stocchiachille ckmmatrixandtheunitaritytriangleanotherlook