Cargando…
Bound States in one and two Spatial Dimensions
In this paper we study the number of bound states for potentials in one and two spatial dimensions. We first show that in addition to the well-known fact that an arbitrarily weak attractive potential has a bound state, it is easy to construct examples where weak potentials have an infinite number of...
Autores principales: | Chadan, K., Khuri, N.N., Martin, A., Wu, Tai Tsun |
---|---|
Lenguaje: | eng |
Publicado: |
2002
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1063/1.1532538 http://cds.cern.ch/record/575271 |
Ejemplares similares
-
Bound states in two spatial dimensions in the non-central case
por: Martin, Andre, et al.
Publicado: (2003) -
Low-energy potential scattering in two and three dimensions
por: Khuri, N.N., et al.
Publicado: (2008) -
Bound States in n Dimensions (Especially n = 1 and n = 2)
por: Khuri, N.N., et al.
Publicado: (2001) -
Universality of low-energy scattering in (2+1) dimensions
por: Chadan, K, et al.
Publicado: (1998) -
DISPL: a software package for one and two spatially dimensioned kinetics-diffusion problems
por: Leaf, G K, et al.
Publicado: (1978)