Cargando…

Non-Collapsing Membrane Instantons in Higher Dimensions

We introduce a particular embedding of seven dimensional self-duality membrane equations in C^3\times R which breaks G_2 invariance down to SU(3). The world-volume membrane instantons define SU(3) special lagrangian submanifolds of C^3. We discuss in detail solutions for spherical and toroidal topol...

Descripción completa

Detalles Bibliográficos
Autores principales: Floratos, Emmanuel G, Leontaris, George K
Lenguaje:eng
Publicado: 2002
Materias:
Acceso en línea:https://dx.doi.org/10.1016/S0370-2693(02)02550-9
http://cds.cern.ch/record/577344
_version_ 1780899398099664896
author Floratos, Emmanuel G
Leontaris, George K
author_facet Floratos, Emmanuel G
Leontaris, George K
author_sort Floratos, Emmanuel G
collection CERN
description We introduce a particular embedding of seven dimensional self-duality membrane equations in C^3\times R which breaks G_2 invariance down to SU(3). The world-volume membrane instantons define SU(3) special lagrangian submanifolds of C^3. We discuss in detail solutions for spherical and toroidal topologies assuming factorization of time. We show that the extra dimensions manifest themselves in the solutions through the appearance of a non-zero conserved charge which prevents the collapse of the membrane. We find non-collapsing rotating membrane instantons which contract from infinite size to a finite one and then they bounce to infinity in finite time. Their motion is periodic. These generalized complex Nahm equations, in the axially symmetric case, lead to extensions of the continuous Toda equation to complex space.
id cern-577344
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 2002
record_format invenio
spelling cern-5773442019-09-30T06:29:59Zdoi:10.1016/S0370-2693(02)02550-9http://cds.cern.ch/record/577344engFloratos, Emmanuel GLeontaris, George KNon-Collapsing Membrane Instantons in Higher DimensionsParticle Physics - TheoryWe introduce a particular embedding of seven dimensional self-duality membrane equations in C^3\times R which breaks G_2 invariance down to SU(3). The world-volume membrane instantons define SU(3) special lagrangian submanifolds of C^3. We discuss in detail solutions for spherical and toroidal topologies assuming factorization of time. We show that the extra dimensions manifest themselves in the solutions through the appearance of a non-zero conserved charge which prevents the collapse of the membrane. We find non-collapsing rotating membrane instantons which contract from infinite size to a finite one and then they bounce to infinity in finite time. Their motion is periodic. These generalized complex Nahm equations, in the axially symmetric case, lead to extensions of the continuous Toda equation to complex space.hep-th/0208151CERN-TH-2002-198oai:cds.cern.ch:5773442002-08-21
spellingShingle Particle Physics - Theory
Floratos, Emmanuel G
Leontaris, George K
Non-Collapsing Membrane Instantons in Higher Dimensions
title Non-Collapsing Membrane Instantons in Higher Dimensions
title_full Non-Collapsing Membrane Instantons in Higher Dimensions
title_fullStr Non-Collapsing Membrane Instantons in Higher Dimensions
title_full_unstemmed Non-Collapsing Membrane Instantons in Higher Dimensions
title_short Non-Collapsing Membrane Instantons in Higher Dimensions
title_sort non-collapsing membrane instantons in higher dimensions
topic Particle Physics - Theory
url https://dx.doi.org/10.1016/S0370-2693(02)02550-9
http://cds.cern.ch/record/577344
work_keys_str_mv AT floratosemmanuelg noncollapsingmembraneinstantonsinhigherdimensions
AT leontarisgeorgek noncollapsingmembraneinstantonsinhigherdimensions