Cargando…
Search for anomalous weak dipole moments of the $\tau$ lepton
The anomalous weak dipole moments of the $\tau$ lepton are measured in a data sample collected by ALEPH from 1990 to 1995 corresponding to an integrated luminosity of 155~pb$^{-1}$. Tau leptons produced in the reaction $e^+ e^- \rightarrow \tau^+ \tau^-$ at energies close to the ${\rm Z}$ mass are s...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Lenguaje: | eng |
Publicado: |
2002
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1140/epjc/s2003-01286-1 http://cds.cern.ch/record/582397 |
Sumario: | The anomalous weak dipole moments of the $\tau$ lepton are measured in a data sample collected by ALEPH from 1990 to 1995 corresponding to an integrated luminosity of 155~pb$^{-1}$. Tau leptons produced in the reaction $e^+ e^- \rightarrow \tau^+ \tau^-$ at energies close to the ${\rm Z}$ mass are studied using their semileptonic decays to $\pi$, $\rho$, $a_1 \rightarrow \pi 2\pi^0$ or $a_1 \rightarrow 3 \pi$. The real and imaginary components of both the anomalous weak magnetic dipole moment and the CP-violating anomalous weak electric dipole moment, $ {\rm Re}\,\mu_{\tau}$, ${\rm Im}\,\mu_{\tau}$, ${\rm Re}\,d_{\tau}$ and ${\rm Im}\,d_{\tau}$, are measured simultaneously by means of a likelihood fit built from the full differential cross section. No evidence of new physics is found. The following bounds are obtained (95\% CL): $|{\rm Re}\, \mu_{\tau} | < 1.14 \times 10^{-3}$, $|{\rm Im}\, \mu_{\tau} | < 2.65 \times 10^{-3}$, $|{\rm Re}\, d_{\tau} | < 0.91 \times 10^{-3}$, and $|{\rm Im}\, d_{\tau} | < 2.01 \times 10^{-3}$. |
---|