Cargando…
Overview of CLIC and CTF3
The CLIC study aims at the design of a high-energy (0.5-5 TeV), high luminosity e+e- linear collider, as a possible facility for the post-LHC era. The beams are accelerated using high-frequency (30 GHz) normal-conducting structures operating at high accelerating gradients to reduce the length and, i...
Autor principal: | |
---|---|
Lenguaje: | eng |
Publicado: |
2002
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/582401 |
Sumario: | The CLIC study aims at the design of a high-energy (0.5-5 TeV), high luminosity e+e- linear collider, as a possible facility for the post-LHC era. The beams are accelerated using high-frequency (30 GHz) normal-conducting structures operating at high accelerating gradients to reduce the length and, in consequence, the cost of the linac. The RF power for these structures is generated using the so-called Two-Beam Acceleration (TBA) scheme, where a low-energy, high-intensity electron beam (drive beam) runs parallel to the main linacs and is decelerated in resonant structures, which extract RF power from the drive beam. The drive beam is first accelerated in a low-frequency fully-loaded normal-conducting linac. Its time structure is then obtained by funneling in isochronous rings using transverse RF deflectors. CTF3, a new generation CLIC Test Facility, is being built at CERN to demonstrate the technical feasibility of this novel drive beam generation and RF power production scheme, albeit on a much smaller scale. CTF3 will also constitute a 30 GHz source with the CLIC nominal peak power and pulse length, for RF component testing. In this paper we give an overview of the CLIC study, focusing on the most recent progress and describe the CTF3 status. |
---|