Cargando…

Non-Local Modification of Gravity and the Cosmological Constant Problem

We propose a phenomenological approach to the cosmological constant problem based on generally covariant non-local and acausal modifications of four-dimensional gravity at enormous distances. The effective Newton constant becomes very small at large length scales, so that sources with immense wavele...

Descripción completa

Detalles Bibliográficos
Autores principales: Arkani-Hamed, Nima, Dimopoulos, Savas, Dvali, Gia, Gabadadze, Gregory
Lenguaje:eng
Publicado: 2002
Materias:
Acceso en línea:http://cds.cern.ch/record/583071
Descripción
Sumario:We propose a phenomenological approach to the cosmological constant problem based on generally covariant non-local and acausal modifications of four-dimensional gravity at enormous distances. The effective Newton constant becomes very small at large length scales, so that sources with immense wavelengths and periods -- such as the vacuum energy-- produce minuscule curvature. Conventional astrophysics, cosmology and standard inflationary scenaria are unaffected, as they involve shorter length scales. A new possibility emerges that inflation may ``self-terminate'' naturally by its own action of stretching wavelengths to enormous sizes. In a simple limit our proposal leads to a modification of Einstein's equation by a single additional term proportional to the average space-time curvature of the Universe. It may also have a qualitative connection with the dS/CFT conjecture.