Cargando…

Finite-Size Scaling of Vector and Axial Current Correlators

Using quenched chiral perturbation theory, we compute the long-distance behaviour of two-point functions of flavour non-singlet axial and vector currents in a finite volume, for small quark masses, and at a fixed gauge-field topology. We also present the corresponding predictions for the unquenched...

Descripción completa

Detalles Bibliográficos
Autores principales: Damgaard, P.H., Hernandez, P., Jansen, K., Laine, M., Lellouch, L.
Lenguaje:eng
Publicado: 2002
Materias:
Acceso en línea:https://dx.doi.org/10.1016/S0550-3213(03)00117-2
http://cds.cern.ch/record/591074
Descripción
Sumario:Using quenched chiral perturbation theory, we compute the long-distance behaviour of two-point functions of flavour non-singlet axial and vector currents in a finite volume, for small quark masses, and at a fixed gauge-field topology. We also present the corresponding predictions for the unquenched theory at fixed topology. These results can in principle be used to measure the low-energy constants of the chiral Lagrangian, from lattice simulations in volumes much smaller than one pion Compton wavelength. We show that quenching has a dramatic effect on the vector correlator, which is argued to vanish to all orders, while the axial correlator appears to be a robust observable only moderately sensitive to quenching.