Cargando…

The pressure of hot QCD up to $g^{6}$ ln(1/g)

The free energy density, or pressure, of QCD has at high temperatures an expansion in the coupling constant g, known so far up to order g^5. We compute here the last contribution which can be determined perturbatively, g^6 ln(1/g), by summing together results for the 4-loop vacuum energy densities o...

Descripción completa

Detalles Bibliográficos
Autores principales: Kajantie, K., Laine, M., Rummukainen, K., Schroder, Y.
Lenguaje:eng
Publicado: 2002
Materias:
Acceso en línea:https://dx.doi.org/10.1103/PhysRevD.67.105008
http://cds.cern.ch/record/592626
_version_ 1780899695435972608
author Kajantie, K.
Laine, M.
Rummukainen, K.
Schroder, Y.
author_facet Kajantie, K.
Laine, M.
Rummukainen, K.
Schroder, Y.
author_sort Kajantie, K.
collection CERN
description The free energy density, or pressure, of QCD has at high temperatures an expansion in the coupling constant g, known so far up to order g^5. We compute here the last contribution which can be determined perturbatively, g^6 ln(1/g), by summing together results for the 4-loop vacuum energy densities of two different three-dimensional effective field theories. We also demonstrate that the inclusion of the new perturbative g^6 ln(1/g) terms, together with the so far unknown perturbative and non-perturbative g^6 terms, could potentially extend the applicability of the resummed coupling constant series down to surprisingly low temperatures.
id cern-592626
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 2002
record_format invenio
spelling cern-5926262022-07-06T02:33:41Zdoi:10.1103/PhysRevD.67.105008http://cds.cern.ch/record/592626engKajantie, K.Laine, M.Rummukainen, K.Schroder, Y.The pressure of hot QCD up to $g^{6}$ ln(1/g)Particle Physics - PhenomenologyThe free energy density, or pressure, of QCD has at high temperatures an expansion in the coupling constant g, known so far up to order g^5. We compute here the last contribution which can be determined perturbatively, g^6 ln(1/g), by summing together results for the 4-loop vacuum energy densities of two different three-dimensional effective field theories. We also demonstrate that the inclusion of the new perturbative g^6 ln(1/g) terms, together with the so far unknown perturbative and non-perturbative g^6 terms, could potentially extend the applicability of the resummed coupling constant series down to surprisingly low temperatures.The free energy density, or pressure, of QCD has at high temperatures an expansion in the coupling constant g, known so far up to order g^5. We compute here the last contribution which can be determined perturbatively, g^6 ln(1/g), by summing together results for the 4-loop vacuum energy densities of two different three-dimensional effective field theories. We also demonstrate that the inclusion of the new perturbative g^6 ln(1/g) terms, once they are summed together with the so far unknown perturbative and non-perturbative g^6 terms, could potentially extend the applicability of the coupling constant series down to surprisingly low temperatures.hep-ph/0211321CERN-TH-2002-334HIP-2002-62-THMIT-CTP-3325CERN-TH-2002-334oai:cds.cern.ch:5926262002-11-20
spellingShingle Particle Physics - Phenomenology
Kajantie, K.
Laine, M.
Rummukainen, K.
Schroder, Y.
The pressure of hot QCD up to $g^{6}$ ln(1/g)
title The pressure of hot QCD up to $g^{6}$ ln(1/g)
title_full The pressure of hot QCD up to $g^{6}$ ln(1/g)
title_fullStr The pressure of hot QCD up to $g^{6}$ ln(1/g)
title_full_unstemmed The pressure of hot QCD up to $g^{6}$ ln(1/g)
title_short The pressure of hot QCD up to $g^{6}$ ln(1/g)
title_sort pressure of hot qcd up to $g^{6}$ ln(1/g)
topic Particle Physics - Phenomenology
url https://dx.doi.org/10.1103/PhysRevD.67.105008
http://cds.cern.ch/record/592626
work_keys_str_mv AT kajantiek thepressureofhotqcduptog6ln1g
AT lainem thepressureofhotqcduptog6ln1g
AT rummukainenk thepressureofhotqcduptog6ln1g
AT schrodery thepressureofhotqcduptog6ln1g
AT kajantiek pressureofhotqcduptog6ln1g
AT lainem pressureofhotqcduptog6ln1g
AT rummukainenk pressureofhotqcduptog6ln1g
AT schrodery pressureofhotqcduptog6ln1g