Cargando…
Universal Calabi-Yau Algebra: Classification and Enumeration of Fibrations
We apply a universal normal Calabi-Yau algebra to the construction and classification of compact complex $n$-dimensional spaces with SU(n) holonomy and their fibrations. This algebraic approach includes natural extensions of reflexive weight vectors to higher dimensions and a `dual' constructio...
Autores principales: | , , , |
---|---|
Lenguaje: | eng |
Publicado: |
2002
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1142/S0217732303009769 http://cds.cern.ch/record/598445 |
Sumario: | We apply a universal normal Calabi-Yau algebra to the construction and classification of compact complex $n$-dimensional spaces with SU(n) holonomy and their fibrations. This algebraic approach includes natural extensions of reflexive weight vectors to higher dimensions and a `dual' construction based on the Diophantine decomposition of invariant monomials. The latter provides recurrence formulae for the numbers of fibrations of Calabi-Yau spaces in arbitrary dimensions, which we exhibit explicitly for some Weierstrass and K3 examples. |
---|