Cargando…

From weak-scale observables to leptogenesis

Thermal leptogenesis is an attractive mechanism for generating the baryon asymmetry of the Universe. However, in supersymmetric models, the parameter space is severely restricted by the gravitino bound on the reheat temperature $T_{RH}$. For hierarchical light neutrino masses, it is shown that therm...

Descripción completa

Detalles Bibliográficos
Autor principal: Davidson, Sacha
Lenguaje:eng
Publicado: 2003
Materias:
Acceso en línea:https://dx.doi.org/10.1088/1126-6708/2003/03/037
http://cds.cern.ch/record/604969
Descripción
Sumario:Thermal leptogenesis is an attractive mechanism for generating the baryon asymmetry of the Universe. However, in supersymmetric models, the parameter space is severely restricted by the gravitino bound on the reheat temperature $T_{RH}$. For hierarchical light neutrino masses, it is shown that thermal leptogenesis {\it can} work when $T_{RH} \sim 10^{9} $ GeV. The low-energy observable consequences of this scenario are $ BR(\tau \to \ell \gamma) \sim 10^{-8} - 10^{-9} $. For higher $T_{RH}$, thermal leptogenesis works in a larger area of parameter space, whose observable consequences are more ambiguous. A parametrisation of the seesaw in terms of weak-scale inputs is used, so the results are independent of the texture chosen for the GUT-scale Yukawa matrices.