Cargando…
The Neutrino Mass Window for Baryogenesis
Interactions of heavy Majorana neutrinos in the thermal phase of the early universe may be the origin of the cosmological matter-antimatter asymmetry. This mechanism of baryogenesis implies stringent constraints on light and heavy Majorana neutrino masses. We derive an improved upper bound on the CP...
Autores principales: | , , |
---|---|
Lenguaje: | eng |
Publicado: |
2003
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1016/S0550-3213(03)00449-8 http://cds.cern.ch/record/605131 |
_version_ | 1780900102160777216 |
---|---|
author | Buchmuller, W. Di Bari, P. Plumacher, M. |
author_facet | Buchmuller, W. Di Bari, P. Plumacher, M. |
author_sort | Buchmuller, W. |
collection | CERN |
description | Interactions of heavy Majorana neutrinos in the thermal phase of the early universe may be the origin of the cosmological matter-antimatter asymmetry. This mechanism of baryogenesis implies stringent constraints on light and heavy Majorana neutrino masses. We derive an improved upper bound on the CP asymmetry in heavy neutrino decays which, together with the kinetic equations, yields an upper bound on all light neutrino masses of 0.1 eV. Lepton number changing processes at temperatures above the temperature T_B of baryogenesis can erase other, pre-existing contributions to the baryon asymmetry. We find that these washout processes become very efficient if the effective neutrino mass \tilde{m}_1 is larger than m_* \simeq 10^{-3} eV. All memory of the initial conditions is then erased. Hence, for neutrino masses in the range from (\Delta m^2_sol)^{1/2} \simeq 8*10^{-3} eV to (\Delta m^2_atm)^{1/2} \simeq 5*10^{-2} eV, which is suggested by neutrino oscillations, leptogenesis emerges as the unique source of the cosmological matter-antimatter asymmetry. |
id | cern-605131 |
institution | Organización Europea para la Investigación Nuclear |
language | eng |
publishDate | 2003 |
record_format | invenio |
spelling | cern-6051312023-03-12T05:59:00Zdoi:10.1016/S0550-3213(03)00449-8http://cds.cern.ch/record/605131engBuchmuller, W.Di Bari, P.Plumacher, M.The Neutrino Mass Window for BaryogenesisParticle Physics - PhenomenologyInteractions of heavy Majorana neutrinos in the thermal phase of the early universe may be the origin of the cosmological matter-antimatter asymmetry. This mechanism of baryogenesis implies stringent constraints on light and heavy Majorana neutrino masses. We derive an improved upper bound on the CP asymmetry in heavy neutrino decays which, together with the kinetic equations, yields an upper bound on all light neutrino masses of 0.1 eV. Lepton number changing processes at temperatures above the temperature T_B of baryogenesis can erase other, pre-existing contributions to the baryon asymmetry. We find that these washout processes become very efficient if the effective neutrino mass \tilde{m}_1 is larger than m_* \simeq 10^{-3} eV. All memory of the initial conditions is then erased. Hence, for neutrino masses in the range from (\Delta m^2_sol)^{1/2} \simeq 8*10^{-3} eV to (\Delta m^2_atm)^{1/2} \simeq 5*10^{-2} eV, which is suggested by neutrino oscillations, leptogenesis emerges as the unique source of the cosmological matter-antimatter asymmetry.Interactions of heavy Majorana neutrinos in the thermal phase of the early universe may be the origin of the cosmological matter-antimatter asymmetry. This mechanism of baryogenesis implies stringent constraints on light and heavy Majorana neutrino masses. We derive an improved upper bound on the CP asymmetry in heavy neutrino decays which, together with the kinetic equations, yields an upper bound on all light neutrino masses of 0.1 eV. Lepton number changing processes at temperatures above the temperature T_B of baryogenesis can erase other, pre-existing contributions to the baryon asymmetry. We find that these washout processes become very efficient if the effective neutrino mass \tilde{m}_1 is larger than m_* \simeq 10^{-3} eV. All memory of the initial conditions is then erased. Hence, for neutrino masses in the range from (\Delta m^2_sol)^{1/2} \simeq 8*10^{-3} eV to (\Delta m^2_atm)^{1/2} \simeq 5*10^{-2} eV, which is suggested by neutrino oscillations, leptogenesis emerges as the unique source of the cosmological matter-antimatter asymmetry.Interactions of heavy Majorana neutrinos in the thermal phase of the early universe may be the origin of the cosmological matter–antimatter asymmetry. This mechanism of baryogenesis implies stringent constraints on light and heavy Majorana neutrino masses. We derive an improved upper bound on the CP asymmetry in heavy neutrino decays which, together with the kinetic equations, yields an upper bound on all light neutrino masses of 0.1 eV. Lepton number changing processes at temperatures above the temperature T B of baryogenesis can erase other, pre-existing contributions to the baryon asymmetry. We find that these washout processes become very efficient if the effective neutrino mass m ̃ 1 is larger than m ∗ ≃10 −3 eV. All memory of the initial conditions is then erased. Hence, for neutrino masses in the range from Δ m 2 sol ≃8×10 −3 eV to Δ m 2 atm ≃5×10 −2 eV, which is suggested by neutrino oscillations, leptogenesis emerges as the unique source of the cosmological matter–antimatter asymmetry.hep-ph/0302092DESY-03-001UAB-FT-540CERN-TH-2003-016CERN-TH-2003-016DESY-03-001DESY-2003-001UAB-FT-540oai:cds.cern.ch:6051312003-02-12 |
spellingShingle | Particle Physics - Phenomenology Buchmuller, W. Di Bari, P. Plumacher, M. The Neutrino Mass Window for Baryogenesis |
title | The Neutrino Mass Window for Baryogenesis |
title_full | The Neutrino Mass Window for Baryogenesis |
title_fullStr | The Neutrino Mass Window for Baryogenesis |
title_full_unstemmed | The Neutrino Mass Window for Baryogenesis |
title_short | The Neutrino Mass Window for Baryogenesis |
title_sort | neutrino mass window for baryogenesis |
topic | Particle Physics - Phenomenology |
url | https://dx.doi.org/10.1016/S0550-3213(03)00449-8 http://cds.cern.ch/record/605131 |
work_keys_str_mv | AT buchmullerw theneutrinomasswindowforbaryogenesis AT dibarip theneutrinomasswindowforbaryogenesis AT plumacherm theneutrinomasswindowforbaryogenesis AT buchmullerw neutrinomasswindowforbaryogenesis AT dibarip neutrinomasswindowforbaryogenesis AT plumacherm neutrinomasswindowforbaryogenesis |